結果

問題 No.1655 123 Swaps
ユーザー sigma425sigma425
提出日時 2021-08-21 01:14:37
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 238 ms / 2,000 ms
コード長 9,026 bytes
コンパイル時間 2,447 ms
コンパイル使用メモリ 212,868 KB
実行使用メモリ 31,020 KB
最終ジャッジ日時 2024-10-14 09:58:38
合計ジャッジ時間 8,186 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 18 ms
14,976 KB
testcase_01 AC 18 ms
14,900 KB
testcase_02 AC 18 ms
14,948 KB
testcase_03 AC 20 ms
14,976 KB
testcase_04 AC 20 ms
14,796 KB
testcase_05 AC 18 ms
14,920 KB
testcase_06 AC 20 ms
14,928 KB
testcase_07 AC 19 ms
14,848 KB
testcase_08 AC 19 ms
14,976 KB
testcase_09 AC 19 ms
14,976 KB
testcase_10 AC 19 ms
14,952 KB
testcase_11 AC 19 ms
14,908 KB
testcase_12 AC 19 ms
14,904 KB
testcase_13 AC 18 ms
14,916 KB
testcase_14 AC 20 ms
14,912 KB
testcase_15 AC 234 ms
30,872 KB
testcase_16 AC 233 ms
30,744 KB
testcase_17 AC 232 ms
30,840 KB
testcase_18 AC 238 ms
30,944 KB
testcase_19 AC 236 ms
30,892 KB
testcase_20 AC 232 ms
31,020 KB
testcase_21 AC 233 ms
30,768 KB
testcase_22 AC 229 ms
30,788 KB
testcase_23 AC 235 ms
30,920 KB
testcase_24 AC 238 ms
30,944 KB
testcase_25 AC 234 ms
30,792 KB
testcase_26 AC 147 ms
23,780 KB
testcase_27 AC 136 ms
23,700 KB
testcase_28 AC 135 ms
23,820 KB
testcase_29 AC 146 ms
23,596 KB
testcase_30 AC 145 ms
23,732 KB
testcase_31 AC 136 ms
23,744 KB
testcase_32 AC 18 ms
14,912 KB
testcase_33 AC 19 ms
14,976 KB
testcase_34 AC 19 ms
14,936 KB
testcase_35 AC 73 ms
19,376 KB
testcase_36 AC 79 ms
19,372 KB
testcase_37 AC 81 ms
19,380 KB
testcase_38 AC 132 ms
23,872 KB
testcase_39 AC 141 ms
23,728 KB
testcase_40 AC 144 ms
23,804 KB
testcase_41 AC 19 ms
14,960 KB
testcase_42 AC 18 ms
14,848 KB
testcase_43 AC 19 ms
14,976 KB
testcase_44 AC 19 ms
14,976 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
#define rep(i,n) for(int i=0;i<int(n);i++)
#define rep1(i,n) for(int i=1;i<=int(n);i++)
#define per(i,n) for(int i=int(n)-1;i>=0;i--)
#define per1(i,n) for(int i=int(n);i>0;i--)
#define all(c) c.begin(),c.end()
#define si(x) int(x.size())
#define pb emplace_back
#define fs first
#define sc second
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
template<class T,class U> void chmax(T& x, U y){if(x<y) x=y;}
template<class T,class U> void chmin(T& x, U y){if(y<x) x=y;}
template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}
template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}
template<class T>
V<T> Vec(size_t a) {
    return V<T>(a);
}
template<class T, class... Ts>
auto Vec(size_t a, Ts... ts) {
  return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));
}
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
	return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
	o<<"{";
	for(const T& v:vc) o<<v<<",";
	o<<"}";
	return o;
}
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }

#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
void dmpr(ostream& os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
	os<<t<<" ~ ";
	dmpr(os,args...);
}
#define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__)
#define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {";  \
	for(auto v: x) cerr << v << ","; cerr << "}" << endl;
#else
#define show(x) void(0)
#define dump(x) void(0)
#define shows(...) void(0)
#endif

template<unsigned int mod_>
struct ModInt{
	using uint = unsigned int;
	using ll = long long;
	using ull = unsigned long long;

	constexpr static uint mod = mod_;

	uint v;
	ModInt():v(0){}
	ModInt(ll _v):v(normS(_v%mod+mod)){}
	explicit operator bool() const {return v!=0;}
	static uint normS(const uint &x){return (x<mod)?x:x-mod;}		// [0 , 2*mod-1] -> [0 , mod-1]
	static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
	ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
	ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
	ModInt operator-() const { return make(normS(mod-v)); }
	ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
	ModInt operator/(const ModInt& b) const { return *this*b.inv();}
	ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
	ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
	ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
	ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
	ModInt& operator++(int){ return *this=*this+1;}
	ModInt& operator--(int){ return *this=*this-1;}
	ModInt pow(ll p) const {
		if(p<0) return inv().pow(-p);
		ModInt a = 1;
		ModInt x = *this;
		while(p){
			if(p&1) a *= x;
			x *= x;
			p >>= 1;
		}
		return a;
	}
	ModInt inv() const {		// should be prime
		return pow(mod-2);
	}
	// ll extgcd(ll a,ll b,ll &x,ll &y) const{
	// 	ll p[]={a,1,0},q[]={b,0,1};
	// 	while(*q){
	// 		ll t=*p/ *q;
	// 		rep(i,3) swap(p[i]-=t*q[i],q[i]);
	// 	}
	// 	if(p[0]<0) rep(i,3) p[i]=-p[i];
	// 	x=p[1],y=p[2];
	// 	return p[0];
	// }
	// ModInt inv() const {
	// 	ll x,y;
	// 	extgcd(v,mod,x,y);
	// 	return make(normS(x+mod));
	// }

	bool operator==(const ModInt& b) const { return v==b.v;}
	bool operator!=(const ModInt& b) const { return v!=b.v;}
	bool operator<(const ModInt& b) const { return v<b.v;}
	friend istream& operator>>(istream &o,ModInt& x){
		ll tmp;
		o>>tmp;
		x=ModInt(tmp);
		return o;
	}
	friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
};
using mint = ModInt<924844033>;

V<mint> fact,ifact,invs;
mint Choose(int a,int b){
	if(b<0 || a<b) return 0;
	return fact[a] * ifact[b] * ifact[a-b];
}
void InitFact(int N){	//[0,N]
	N++;
	fact.resize(N);
	ifact.resize(N);
	invs.resize(N);
	fact[0] = 1;
	rep1(i,N-1) fact[i] = fact[i-1] * i;
	ifact[N-1] = fact[N-1].inv();
	for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1);
	rep1(i,N-1) invs[i] = fact[i-1] * ifact[i];
}

// inplace_fmt (without bit rearranging)
// fft:
// 		a[rev(i)] <- \sum_j \zeta^{ij} a[j]
// invfft:
//		a[i] <- (1/n) \sum_j \zeta^{-ij} a[rev(j)]
// These two are inversions.

void fft(V<mint>& a){
	static constexpr uint mod = mint::mod;
	static constexpr uint mod2 = mod + mod;
	static const int H = 21;				// ord_2 (mod-1)
	static const mint root = 5;				// primitive root of (Z/pZ)*
	static mint magic[H-1];

	int n = si(a);
	assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H);	// n should be power of 2

	if(!magic[0]){		// precalc
		rep(i,H-1){
			mint w = -root.pow(((mod-1)>>(i+2))*3);
			magic[i] = w;
		}
	}
	int m = n;
	if(m >>= 1){
		rep(i,m){
			uint v = a[i+m].v;					// < M
			a[i+m].v = a[i].v + mod - v;		// < 2M
			a[i].v += v;						// < 2M
		}
	}
	if(m >>= 1){
		mint p = 1;
		for(int h=0,s=0; s<n; s += m*2){
			for(int i=s;i<s+m;i++){
				uint v = (a[i+m] * p).v;		// < M
				a[i+m].v = a[i].v + mod - v;	// < 3M
				a[i].v += v;					// < 3M
			}
			p *= magic[__builtin_ctz(++h)];
		}
	}
	while(m){
		if(m >>= 1){
			mint p = 1;
			for(int h=0,s=0; s<n; s += m*2){
				for(int i=s;i<s+m;i++){
					uint v = (a[i+m] * p).v;		// < M
					a[i+m].v = a[i].v + mod - v;	// < 4M
					a[i].v += v;					// < 4M
				}
				p *= magic[__builtin_ctz(++h)];
			}
		}
		if(m >>= 1){
			mint p = 1;
			for(int h=0,s=0; s<n; s += m*2){
				for(int i=s;i<s+m;i++){
					uint v = (a[i+m] * p).v;								// < M
					a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v;	// < 2M
					a[i+m].v = a[i].v + mod - v;							// < 3M
					a[i].v += v;											// < 3M
				}
				p *= magic[__builtin_ctz(++h)];
			}
		}
	}
	rep(i,n){
		a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v;		// < 2M
		a[i].v = (a[i].v >= mod) ? a[i].v - mod : a[i].v;		// < M
	}
	// finally < mod !!
}
void invfft(V<mint>& a){
	static constexpr uint mod = mint::mod;
	static constexpr uint mod2 = mod + mod;
	static const int H = 21;				// ord_2 (mod-1)
	static const mint root = 5;				// primitive root of (Z/pZ)*
	static mint magic[H-1];

	int n = si(a);
	assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H);	// n should be power of 2

	if(!magic[0]){		// precalc
		rep(i,H-1){
			mint w = -root.pow(((mod-1)>>(i+2))*3);
			magic[i] = w.inv();
		}
	}
	int m = 1;
	if(m < n>>1){
		mint p = 1;
		for(int h=0,s=0; s<n; s += m*2){
			for(int i=s;i<s+m;i++){
				ull x = a[i].v + mod - a[i+m].v;	// < 2M
				a[i].v += a[i+m].v;					// < 2M
				a[i+m].v = (p.v * x) % mod;			// < M
			}
			p *= magic[__builtin_ctz(++h)];
		}
		m <<= 1;
	}
	for(;m < n>>1; m <<= 1){
		mint p = 1;
		for(int h=0,s=0; s<n; s+= m*2){
			for(int i=s;i<s+(m>>1);i++){
				ull x = a[i].v + mod2 - a[i+m].v;	// < 4M
				a[i].v += a[i+m].v;					// < 4M
				a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v;	// < 2M
				a[i+m].v = (p.v * x) % mod;		// < M
			}
			for(int i=s+(m>>1); i<s+m; i++){
				ull x = a[i].v + mod - a[i+m].v;	// < 2M
				a[i].v += a[i+m].v;	// < 2M
				a[i+m].v = (p.v * x) % mod;	// < M
			}
			p *= magic[__builtin_ctz(++h)];
		}
	}
	if(m < n){
		rep(i,m){
			uint x = a[i].v + mod2 - a[i+m].v;	// < 4M
			a[i].v += a[i+m].v;	// < 4M
			a[i+m].v = x;	// < 4M
		}
	}
	const mint in = mint(n).inv();
	rep(i,n) a[i] *= in;	// < M
	// finally < mod !!
}

// A,B = 500000 -> 70ms
// verify https://judge.yosupo.jp/submission/44937
V<mint> multiply(V<mint> a, V<mint> b) {
	int A = si(a), B = si(b);
	if (!A || !B) return {};
	int n = A+B-1;
	int s = 1; while(s<n) s*=2;
	if(a == b){			// # of fft call : 3 -> 2
		a.resize(s); fft(a);
		rep(i,s) a[i] *= a[i];
	}else{
		a.resize(s); fft(a);
		b.resize(s); fft(b);
		rep(i,s) a[i] *= b[i];
	}
	invfft(a); a.resize(n);
	return a;
}

int main(){
	cin.tie(0);
	ios::sync_with_stdio(false);		//DON'T USE scanf/printf/puts !!
	cout << fixed << setprecision(20);
	InitFact(1000000);

	int A,B,C; cin >> A >> B >> C;
	if((A+B+C)%2){
		cout << 0 << endl;
		return 0;
	}
	int n = (A+B+C)/2;
	auto getf = [&](int A){
		V<mint> f(A/2+1);
		rep(i,A/2+1) f[i] = ifact[i] * ifact[A-2*i];
		return f;
	};
	auto fa = getf(A);
	auto fb = getf(B);
	auto fc = getf(C);
	auto f = multiply(multiply(fa,fb),fc);
	f.resize(n+1);
	rep(p,n+1) f[p] *= fact[p] * fact[2*n-2*p];
	show(f);

	V<mint> g;	// exactly p pair
	{
		// g_i = f_i - (n-i,1) f_{i+1} + (n-i,2) f_{i+2} - ..  +- f_n
		V<mint> p(n+1); rep(i,n+1) p[i] = mint(-1).pow(i) * ifact[i];
		V<mint> q(n+1); rep(i,n+1) q[i] = ifact[i] * f[n-i];
		auto r = multiply(p,q);
		show(p);show(q);show(r);
		g.resize(n+1);
		rep(i,n+1) g[i] = r[n-i] * fact[n-i];
	}
	show(g);
	mint ans = 0;
	mint z = 1, w = 0;
	rep(q,n+1){
		int p = n-q;
		ans += g[p] * Choose(n,p) * z/(z+w+w);
		mint tmp = z+w;
		z = w+w, w = tmp;
	}
	cout << ans << endl;
	
}
0