結果
問題 | No.1659 Product of Divisors |
ユーザー | LayCurse |
提出日時 | 2021-08-27 21:23:41 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 10 ms / 2,000 ms |
コード長 | 29,128 bytes |
コンパイル時間 | 4,201 ms |
コンパイル使用メモリ | 247,228 KB |
実行使用メモリ | 12,284 KB |
最終ジャッジ日時 | 2024-11-21 00:42:39 |
合計ジャッジ時間 | 4,758 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 10 ms
9,800 KB |
testcase_01 | AC | 10 ms
9,932 KB |
testcase_02 | AC | 10 ms
9,672 KB |
testcase_03 | AC | 9 ms
9,800 KB |
testcase_04 | AC | 8 ms
9,852 KB |
testcase_05 | AC | 9 ms
9,796 KB |
testcase_06 | AC | 10 ms
12,148 KB |
testcase_07 | AC | 10 ms
11,716 KB |
testcase_08 | AC | 9 ms
9,792 KB |
testcase_09 | AC | 10 ms
10,784 KB |
testcase_10 | AC | 9 ms
9,672 KB |
testcase_11 | AC | 9 ms
9,672 KB |
testcase_12 | AC | 9 ms
11,976 KB |
testcase_13 | AC | 8 ms
9,800 KB |
testcase_14 | AC | 10 ms
12,284 KB |
testcase_15 | AC | 10 ms
9,928 KB |
testcase_16 | AC | 9 ms
9,672 KB |
testcase_17 | AC | 10 ms
9,924 KB |
testcase_18 | AC | 10 ms
11,844 KB |
testcase_19 | AC | 10 ms
9,672 KB |
testcase_20 | AC | 10 ms
9,676 KB |
testcase_21 | AC | 9 ms
9,932 KB |
testcase_22 | AC | 10 ms
9,668 KB |
testcase_23 | AC | 9 ms
9,676 KB |
testcase_24 | AC | 9 ms
9,800 KB |
ソースコード
#pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #pragma GCC optimize("inline") #include<bits/stdc++.h> using namespace std; #define MD (1000000007U) template<class T> struct cLtraits_identity{ using type = T; } ; template<class T> using cLtraits_try_make_signed = typename conditional< is_integral<T>::value, make_signed<T>, cLtraits_identity<T> >::type; template <class S, class T> struct cLtraits_common_type{ using tS = typename cLtraits_try_make_signed<S>::type; using tT = typename cLtraits_try_make_signed<T>::type; using type = typename common_type<tS,tT>::type; } ; void*wmem; char memarr[96000000]; template<class S, class T> inline auto min_L(S a, T b) -> typename cLtraits_common_type<S,T>::type{ return (typename cLtraits_common_type<S,T>::type) a <= (typename cLtraits_common_type<S,T>::type) b ? a : b; } template<class S, class T> inline auto max_L(S a, T b) -> typename cLtraits_common_type<S,T>::type{ return (typename cLtraits_common_type<S,T>::type) a >= (typename cLtraits_common_type<S,T>::type) b ? a : b; } template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){ static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] ); (*arr)=(T*)(*mem); (*mem)=((*arr)+x); } template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){ walloc1d(arr, x2-x1, mem); (*arr) -= x1; } #define ISPRIME_PRE_CALC_SIZE 1000000 char isPrime_prime_table[ISPRIME_PRE_CALC_SIZE]; template<class T> inline int isPrime(T n); void isPrime32_init(void); int isPrime32_sub(int b, unsigned n); int isPrime32(unsigned n); int isPrime64_sub(long long b, unsigned long long n); int isPrime64(unsigned long long n); #define FACTOR_PRE_CALC_SIZE 1000000 int factor_hasprime_table[FACTOR_PRE_CALC_SIZE]; template<class T, class R1, class R2> int Factor(T N, R1 fac[], R2 fs[], void *mem = wmem); template<class T, class R1> int Factor(T N, R1 fac[], void *mem = wmem); template<class T> int Factor(T N, void *mem = wmem); unsigned Factor32_rho(unsigned n); template<class R1, class R2> int Factor32(unsigned N, R1 fac[], R2 fs[], void *mem = wmem); unsigned long long Factor64_rho(unsigned long long n); template<class R1, class R2> int Factor64(unsigned long long N, R1 fac[], R2 fs[], void *mem = wmem); void Factor32_init(void); template<class T1> void sortA_L(int N, T1 a[], void *mem = wmem){ sort(a, a+N); } struct Rand{ unsigned x; unsigned y; unsigned z; unsigned w; Rand(void){ x=123456789; y=362436069; z=521288629; w=(unsigned)time(NULL); } Rand(unsigned seed){ x=123456789; y=362436069; z=521288629; w=seed; } inline unsigned get(void){ unsigned t; t = (x^(x<<11)); x=y; y=z; z=w; w = (w^(w>>19))^(t^(t>>8)); return w; } inline double getUni(void){ return get()/4294967296.0; } inline int get(int a){ return (int)(a*getUni()); } inline int get(int a, int b){ return a+(int)((b-a+1)*getUni()); } inline long long get(long long a){ return(long long)(a*getUni()); } inline long long get(long long a, long long b){ return a+(long long)((b-a+1)*getUni()); } inline double get(double a, double b){ return a+(b-a)*getUni(); } inline int getExp(int a){ return(int)(exp(getUni()*log(a+1.0))-1.0); } inline int getExp(int a, int b){ return a+(int)(exp(getUni()*log((b-a+1)+1.0))-1.0); } } ; struct Modint{ unsigned val; Modint(){ val=0; } Modint(int a){ val = ord(a); } Modint(unsigned a){ val = ord(a); } Modint(long long a){ val = ord(a); } Modint(unsigned long long a){ val = ord(a); } inline unsigned ord(unsigned a){ return a%MD; } inline unsigned ord(int a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned ord(unsigned long long a){ return a%MD; } inline unsigned ord(long long a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned get(){ return val; } inline Modint &operator++(){ val++; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator--(){ if(val == 0){ val = MD - 1; } else{ --val; } return *this; } inline Modint operator++(int a){ Modint res(*this); val++; if(val >= MD){ val -= MD; } return res; } inline Modint operator--(int a){ Modint res(*this); if(val == 0){ val = MD - 1; } else{ --val; } return res; } inline Modint &operator+=(Modint a){ val += a.val; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator-=(Modint a){ if(val < a.val){ val = val + MD - a.val; } else{ val -= a.val; } return *this; } inline Modint &operator*=(Modint a){ val = ((unsigned long long)val*a.val)%MD; return *this; } inline Modint &operator/=(Modint a){ return *this *= a.inverse(); } inline Modint operator+(Modint a){ return Modint(*this)+=a; } inline Modint operator-(Modint a){ return Modint(*this)-=a; } inline Modint operator*(Modint a){ return Modint(*this)*=a; } inline Modint operator/(Modint a){ return Modint(*this)/=a; } inline Modint operator+(int a){ return Modint(*this)+=Modint(a); } inline Modint operator-(int a){ return Modint(*this)-=Modint(a); } inline Modint operator*(int a){ return Modint(*this)*=Modint(a); } inline Modint operator/(int a){ return Modint(*this)/=Modint(a); } inline Modint operator+(long long a){ return Modint(*this)+=Modint(a); } inline Modint operator-(long long a){ return Modint(*this)-=Modint(a); } inline Modint operator*(long long a){ return Modint(*this)*=Modint(a); } inline Modint operator/(long long a){ return Modint(*this)/=Modint(a); } inline Modint operator-(void){ Modint res; if(val){ res.val=MD-val; } else{ res.val=0; } return res; } inline operator bool(void){ return val!=0; } inline operator int(void){ return get(); } inline operator long long(void){ return get(); } inline Modint inverse(){ int a = val; int b = MD; int u = 1; int v = 0; int t; Modint res; while(b){ t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if(u < 0){ u += MD; } res.val = u; return res; } inline Modint pw(unsigned long long b){ Modint a(*this); Modint res; res.val = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } inline bool operator==(int a){ return ord(a)==val; } inline bool operator!=(int a){ return ord(a)!=val; } } ; inline Modint operator+(int a, Modint b){ return Modint(a)+=b; } inline Modint operator-(int a, Modint b){ return Modint(a)-=b; } inline Modint operator*(int a, Modint b){ return Modint(a)*=b; } inline Modint operator/(int a, Modint b){ return Modint(a)/=b; } inline Modint operator+(long long a, Modint b){ return Modint(a)+=b; } inline Modint operator-(long long a, Modint b){ return Modint(a)-=b; } inline Modint operator*(long long a, Modint b){ return Modint(a)*=b; } inline Modint operator/(long long a, Modint b){ return Modint(a)/=b; } inline int my_getchar_unlocked(){ static char buf[1048576]; static int s = 1048576; static int e = 1048576; if(s == e && e == 1048576){ e = fread_unlocked(buf, 1, 1048576, stdin); s = 0; } if(s == e){ return EOF; } return buf[s++]; } inline void rd(long long &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } struct MY_WRITER{ char buf[1048576]; int s; int e; MY_WRITER(){ s = 0; e = 1048576; } ~MY_WRITER(){ if(s){ fwrite_unlocked(buf, 1, s, stdout); } } } ; MY_WRITER MY_WRITER_VAR; void my_putchar_unlocked(int a){ if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){ fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout); MY_WRITER_VAR.s = 0; } MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a; } inline void wt_L(char a){ my_putchar_unlocked(a); } inline void wt_L(int x){ int s=0; int m=0; char f[10]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ my_putchar_unlocked('-'); } while(s--){ my_putchar_unlocked(f[s]+'0'); } } inline void wt_L(Modint x){ int i; i = (int)x; wt_L(i); } template<class T> inline T pow2_L(T a){ return a*a; } template<class T, class U> inline T GCD_L(T a, U b){ T r; while(b){ r=a; a=b; b=r%a; } return a; } template<class S, class T> inline S chmax(S &a, T b){ if(a<b){ a=b; } return a; } template<class T> struct Comb{ int mem_fact; T*factri; T*ifactri; int mem_dfact; T*dfactri; int mem_pw2; int mem_pw3; int mem_pw10; int mem_rep1; T*pw2c; T*pw3c; T*pw10c; T*rep1c; int mem_ipw2; int mem_ipw3; int mem_ipw10; T*ipw2c; T*ipw3c; T*ipw10c; Comb(){ mem_fact = 0; mem_dfact = 0; mem_pw2 = mem_pw3 = mem_pw10 = mem_rep1 = 0; mem_ipw2 = mem_ipw3 = mem_ipw10 = 0; } inline void expand_fact(int k){ int i; if(k <= mem_fact){ return; } chmax(k, 2 * mem_fact); if(mem_fact == 0){ factri = (T*)malloc(k * sizeof(T)); ifactri = (T*)malloc(k * sizeof(T)); factri[0] = 1; for(i=(1);i<(k);i++){ factri[i] = i * factri[i-1]; } ifactri[k-1] = 1 / factri[k-1]; for(i=(k-1)-1;i>=(0);i--){ ifactri[i] = (i+1) * ifactri[i+1]; } } else{ factri = (T*)realloc(factri, k * sizeof(T)); ifactri = (T*)realloc(ifactri, k * sizeof(T)); for(i=(mem_fact);i<(k);i++){ factri[i] = i * factri[i-1]; } ifactri[k-1] = 1 / factri[k-1]; for(i=(k-1)-1;i>=(mem_fact);i--){ ifactri[i] = (i+1) * ifactri[i+1]; } } mem_fact = k; } inline T fac(int k){ if(mem_fact < k+1){ expand_fact(k+1); } return factri[k]; } inline T ifac(int k){ if(mem_fact < k+1){ expand_fact(k+1); } return ifactri[k]; } inline T C(int a, int b){ if(b < 0 || b > a){ return 0; } if(mem_fact < a+1){ expand_fact(a+1); } return factri[a] * ifactri[b] * ifactri[a-b]; } inline T P(int a, int b){ if(b < 0 || b > a){ return 0; } if(mem_fact < a+1){ expand_fact(a+1); } return factri[a] * ifactri[a-b]; } inline T H(int a, int b){ if(a==0 && b==0){ return 1; } if(a <= 0 || b < 0){ return 0; } if(mem_fact < a+b){ expand_fact(a+b); } return C(a+b-1, b); } inline T Multinomial(int sz, int a[]){ int i; int s = 0; T res; for(i=(0);i<(sz);i++){ s += a[i]; } if(mem_fact < s+1){ expand_fact(s+1); } res = factri[s]; for(i=(0);i<(sz);i++){ res *= ifactri[a[i]]; } return res; } inline T Multinomial(int a){ return 1; } inline T Multinomial(int a, int b){ if(mem_fact < a+b+1){ expand_fact(a+b+1); } return factri[a+b] * ifactri[a] * ifactri[b]; } inline T Multinomial(int a, int b, int c){ if(mem_fact < a+b+c+1){ expand_fact(a+b+c+1); } return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c]; } inline T Multinomial(int a, int b, int c, int d){ if(mem_fact < a+b+c+d+1){ expand_fact(a+b+c+d+1); } return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d]; } inline T Catalan(int n){ if(n < 0){ return 0; } if(mem_fact < 2*n+1){ expand_fact(2*n+1); } return factri[2*n] * ifactri[n] * ifactri[n+1]; } inline T Catalan(int n, int m, int k){ if(k <= 0){ return C(n+m, n); } if(n < k || m < k){ return 0; } return C(n+m, m) - C(n+m, k-1); } inline T Catalan_s(long long n, long long m, long long k){ if(k <= 0){ return C_s(n+m, n); } if(n < k || m < k){ return 0; } return C_s(n+m, m) - C_s(n+m, k-1); } inline T C_s(long long a, long long b){ long long i; T res; if(b < 0 || b > a){ return 0; } if(b > a - b){ b = a - b; } res = 1; for(i=(0);i<(b);i++){ res *= a - i; res /= i + 1; } return res; } inline T P_s(long long a, long long b){ long long i; T res; if(b < 0 || b > a){ return 0; } res = 1; for(i=(0);i<(b);i++){ res *= a - i; } return res; } inline T H_s(long long a, long long b){ if(a==0 && b==0){ return 1; } if(a <= 0 || b < 0){ return 0; } return C_s(a+b-1, b); } inline T per_s(long long n, long long k){ T d; int m; if(n < 0 || k < 0){ return 0; } if(n == k && k == 0){ return 1; } if(n == 0 || k == 0){ return 0; } if(k==1){ return 1; } if(k==2){ d = n / 2; return d; } if(k==3){ d = (n-1) / 6; m = (n-1) % 6; if(m==0){ return 3 * d * d + d; } if(m==1){ return 3 * d * d + 2 * d; } if(m==2){ return 3 * d * d + 3 * d + 1; } if(m==3){ return 3 * d * d + 4 * d + 1; } if(m==4){ return 3 * d * d + 5 * d + 2; } if(m==5){ return 3 * d * d + 6 * d + 3; } } assert(0 && "per_s should be k <= 3"); return -1; } inline void expand_dfact(int k){ int i; if(k <= mem_dfact){ return; } chmax(k, 3); chmax(k, 2 * mem_dfact); if(mem_dfact==0){ dfactri = (T*)malloc(k * sizeof(T)); dfactri[0] = dfactri[1] = 1; for(i=(2);i<(k);i++){ dfactri[i] = i * dfactri[i-2]; } } else{ dfactri = (T*)realloc(dfactri, k * sizeof(T)); for(i=(mem_dfact);i<(k);i++){ dfactri[i] = i * dfactri[i-2]; } } mem_dfact = k; } inline void expand_pw2(int k){ int i; if(k <= mem_pw2){ return; } chmax(k, 2 * mem_pw2); if(mem_pw2==0){ pw2c = (T*)malloc(k * sizeof(T)); pw2c[0] = 1; for(i=(1);i<(k);i++){ pw2c[i] = 2 * pw2c[i-1]; } } else{ pw2c = (T*)realloc(pw2c, k * sizeof(T)); for(i=(mem_pw2);i<(k);i++){ pw2c[i] = 2 * pw2c[i-1]; } } mem_pw2 = k; } inline void expand_ipw2(int k){ int i; if(k <= mem_ipw2){ return; } chmax(k, 2); chmax(k, 2 * mem_ipw2); if(mem_ipw2==0){ ipw2c = (T*)malloc(k * sizeof(T)); ipw2c[0] = 1; ipw2c[1] = ipw2c[0] / 2; for(i=(1);i<(k);i++){ ipw2c[i] = ipw2c[1] * ipw2c[i-1]; } } else{ ipw2c = (T*)realloc(ipw2c, k * sizeof(T)); for(i=(mem_ipw2);i<(k);i++){ ipw2c[i] = ipw2c[1] * ipw2c[i-1]; } } mem_ipw2 = k; } inline void expand_pw3(int k){ int i; if(k <= mem_pw3){ return; } chmax(k, 2 * mem_pw3); if(mem_pw3==0){ pw3c = (T*)malloc(k * sizeof(T)); pw3c[0] = 1; for(i=(1);i<(k);i++){ pw3c[i] = 3 * pw3c[i-1]; } } else{ pw3c = (T*)realloc(pw3c, k * sizeof(T)); for(i=(mem_pw3);i<(k);i++){ pw3c[i] = 3 * pw3c[i-1]; } } mem_pw3 = k; } inline void expand_ipw3(int k){ int i; if(k <= mem_ipw3){ return; } chmax(k, 2); chmax(k, 2 * mem_ipw3); if(mem_ipw3==0){ ipw3c = (T*)malloc(k * sizeof(T)); ipw3c[0] = 1; ipw3c[1] = ipw3c[0] / 3; for(i=(1);i<(k);i++){ ipw3c[i] = ipw3c[1] * ipw3c[i-1]; } } else{ ipw3c = (T*)realloc(ipw3c, k * sizeof(T)); for(i=(mem_ipw3);i<(k);i++){ ipw3c[i] = ipw3c[1] * ipw3c[i-1]; } } mem_ipw3 = k; } inline void expand_pw10(int k){ int i; if(k <= mem_pw10){ return; } chmax(k, 2 * mem_pw10); if(mem_pw10==0){ pw10c = (T*)malloc(k * sizeof(T)); pw10c[0] = 1; for(i=(1);i<(k);i++){ pw10c[i] = 10 * pw10c[i-1]; } } else{ pw10c = (T*)realloc(pw10c, k * sizeof(T)); for(i=(mem_pw10);i<(k);i++){ pw10c[i] = 10 * pw10c[i-1]; } } mem_pw10 = k; } inline void expand_ipw10(int k){ int i; if(k <= mem_ipw10){ return; } chmax(k, 2); chmax(k, 2 * mem_ipw10); if(mem_ipw10==0){ ipw10c = (T*)malloc(k * sizeof(T)); ipw10c[0] = 1; ipw10c[1] = ipw10c[0] / 10; for(i=(1);i<(k);i++){ ipw10c[i] = ipw10c[1] * ipw10c[i-1]; } } else{ ipw10c = (T*)realloc(ipw10c, k * sizeof(T)); for(i=(mem_ipw10);i<(k);i++){ ipw10c[i] = ipw10c[1] * ipw10c[i-1]; } } mem_ipw10 = k; } inline void expand_rep1(int k){ int i; if(k <= mem_rep1){ return; } chmax(k, 2 * mem_rep1); if(mem_rep1==0){ rep1c = (T*)malloc(k * sizeof(T)); rep1c[0] = 0; for(i=(1);i<(k);i++){ rep1c[i] = 10 * rep1c[i-1] + 1; } } else{ rep1c = (T*)realloc(rep1c, k * sizeof(T)); for(i=(mem_rep1);i<(k);i++){ rep1c[i] = 10 * rep1c[i-1] + 1; } } mem_rep1 = k; } inline T dfac(int k){ if(k >= 0){ if(mem_dfact < k+1){ expand_dfact(k+1); } return dfactri[k]; } if(k==-1){ return 1; } k = - k - 2; if(k % 4 == 1){ return 1 / (-dfac(k)); } return 1 / dfac(k); } inline T pw2(int k){ if(k >= 0){ if(mem_pw2 < k+1){ expand_pw2(k+1); } return pw2c[k]; } else{ k = -k; if(mem_ipw2 < k+1){ expand_ipw2(k+1); } return ipw2c[k]; } } inline T pw3(int k){ if(k >= 0){ if(mem_pw3 < k+1){ expand_pw3(k+1); } return pw3c[k]; } else{ k = -k; if(mem_ipw3 < k+1){ expand_ipw3(k+1); } return ipw3c[k]; } } inline T pw10(int k){ if(k >= 0){ if(mem_pw10 < k+1){ expand_pw10(k+1); } return pw10c[k]; } else{ k = -k; if(mem_ipw10 < k+1){ expand_ipw10(k+1); } return ipw10c[k]; } } inline T repunit(int k){ if(mem_rep1 < k+1){ expand_rep1(k+1); } return rep1c[k]; } } ; template<> inline Modint Comb<Modint>::C_s(long long a, long long b){ long long i; Modint res; Modint d; if(b < 0 || b > a){ return 0; } if(b > a - b){ b = a - b; } res = d = 1; for(i=(0);i<(b);i++){ res *= a - i; d *= i + 1; } return res / d; } inline long long Isqrt_f_L(const long long n){ long long r = sqrt(n); r =max_L(r-2, 0); while((pow2_L((r+1)))<= n ){ r++; } return r; } long long N; long long K; int fs; long long f[100]; int fn[100]; Comb<Modint> comb; int main(){ int i; wmem = memarr; { isPrime32_init(); } { Factor32_init(); } Modint res = 1; rd(N); rd(K); fs = Factor(N,f,fn); for(i=(0);i<(fs);i++){ res *= comb.H_s(K+1,fn[i]); } wt_L(res); wt_L('\n'); return 0; } template<class T> inline int isPrime(T n){ T i; if(n<=1){ return 0; } if(n <= (1ULL<<32) - 1){ return isPrime32(n); } if(n <= (1ULL<<63) - 1 + (1ULL<<63)){ return isPrime64(n); } if(n<=3){ return 1; } if(n%2==0){ return 0; } for(i=3;i*i<=n;i+=2){ if(n%i==0){ return 0; } } return 1; } int isPrime32_sub(int b, unsigned n){ unsigned i; unsigned t = 0; unsigned u = n-1; unsigned long long nw; unsigned long long nx; while(!(u&1)){ t++; u >>= 1; } nw = 1; nx = b % n; while(u){ if(u&1){ nw = (nw * nx) % n; } nx = (nx * nx) % n; u >>= 1; } for(i=(0);i<(t);i++){ nx = (nw * nw) % n; if(nx == 1 && nw != 1 && nw != n-1){ return 0; } nw = nx; } if(nw == 1){ return 1; } return 0; } int isPrime32(unsigned n){ if(n < 100000){ return isPrime_prime_table[n]; } if(n % 2 == 0){ return 0; } if(!isPrime32_sub(2,n)){ return 0; } if(n<=1000000){ if(!isPrime32_sub(3,n)){ return 0; } } else{ if(!isPrime32_sub(7,n)){ return 0; } if(!isPrime32_sub(61,n)){ return 0; } } return 1; } int isPrime64_sub(long long b, unsigned long long n){ unsigned long long i; unsigned long long t = 0; unsigned long long u = n-1; __uint128_t nw; __uint128_t nx; while(!(u&1)){ t++; u >>= 1; } nw = 1; nx = b % n; while(u){ if(u&1){ nw = (nw * nx) % n; } nx = (nx * nx) % n; u >>= 1; } for(i=(0);i<(t);i++){ nx = (nw * nw) % n; if(nx == 1 && nw != 1 && nw != n-1){ return 0; } nw = nx; } if(nw == 1){ return 1; } return 0; } int isPrime64(unsigned long long n){ if(n < 100000){ return isPrime_prime_table[n]; } if(n < (1ULL<<32)){ return isPrime32(n); } if(n % 2 == 0){ return 0; } if(!isPrime64_sub(2,n)){ return 0; } if(n <= 21652684502221ULL){ if(!isPrime64_sub(1215,n)){ return 0; } if(!isPrime64_sub(34862,n)){ return 0; } if(!isPrime64_sub(574237825,n)){ return 0; } } else{ if(!isPrime64_sub(325,n)){ return 0; } if(!isPrime64_sub(9375,n)){ return 0; } if(!isPrime64_sub(28178,n)){ return 0; } if(!isPrime64_sub(450775,n)){ return 0; } if(!isPrime64_sub(9780504,n)){ return 0; } if(!isPrime64_sub(1795265022,n)){ return 0; } } return 1; } void isPrime32_init(void){ int i; int j; int k; k =Isqrt_f_L(ISPRIME_PRE_CALC_SIZE); for(i=(2);i<(ISPRIME_PRE_CALC_SIZE);i++){ isPrime_prime_table[i] = 1; } for(i=(2);i<(k+1);i++){ if(isPrime_prime_table[i]){ for(j=(i*i);j<(ISPRIME_PRE_CALC_SIZE);j+=(i)){ isPrime_prime_table[j] = 0; } } } } template<class T, class R1, class R2> int Factor(T N, R1 fac[], R2 fs[], void *mem/* = wmem*/){ T i; int sz = 0; if(N <= 1){ return sz; } if(N <= (1ULL<<32) - 1){ return Factor32(N, fac, fs, mem); } if(N <= (1ULL<<63) - 1 + (1ULL<<63)){ return Factor64(N, fac, fs, mem); } if(N%2==0){ fac[sz] = 2; fs[sz] = 1; N /= 2; while(N%2==0){ N /= 2; fs[sz]++; } sz++; } for(i=3;i*i<=N;i+=2){ if(N%i==0){ fac[sz] = i; fs[sz] = 1; N /= i; while(N%i==0){ N /= i; fs[sz]++; } sz++; } } if(N > 1){ fac[sz] = N; fs[sz] = 1; sz++; } return sz; } template<class T, class R1> int Factor(T N, R1 fac[], void *mem/* = wmem*/){ int*fs; walloc1d(&fs,128,&mem); return Factor(N, fac, fs, mem); } template<class T> int Factor(T N, void *mem/* = wmem*/){ T*fac; int*fs; walloc1d(&fac,128,&mem); walloc1d(&fs,128,&mem); return Factor(N, fac, fs, mem); } unsigned Factor32_rho(unsigned n){ static Rand rnd; const int step = 16; int i; int s; int nx; int mx; unsigned long long x; unsigned long long y; unsigned long long memo; unsigned long long c; unsigned long long m; unsigned g; long long lm; lm =min_L(1ULL<<30, n - 1); for(;;){ x = y = rnd.get(1LL, lm); c = rnd.get(1LL, lm); g = 1; for(nx=1;g==1;nx<<=1){ x = y; for(i=(0);i<(nx);i++){ y = (y * y + c) % n; } for(s=0;s<nx&&g==1;s+=step){ m = 1; memo = y; mx =min_L(step, nx-s); for(i=(0);i<(mx);i++){ y = (y * y + c) % n; if(x >= y){ m = (m * (x - y)) % n; } else{ m = (m * (y - x)) % n; } } g =GCD_L(n, m); if(g != 1){ if(g != n){ return g; } y = memo; for(;;){ y = (y * y + c) % n; if(x >= y){ m = x - y; } else{ m = y - x; } g =GCD_L(n, m); if(g == n){ break; } if(g != 1){ return g; } } } } } } return 0; } template<class R1, class R2> int Factor32(unsigned N, R1 fac[], R2 fs[], void *mem/* = wmem*/){ int res = 0; int sz = 0; int i; int k; unsigned*val; unsigned*valtmp; unsigned pf; unsigned n; if(N <= 1){ return 0; } walloc1d(&val, 128, &mem); walloc1d(&valtmp, 128, &mem); while(N%2==0){ val[res++] = 2; N /= 2; } while(N%3==0){ val[res++] = 3; N /= 3; } while(N%5==0){ val[res++] = 5; N /= 5; } if(N > 1){ valtmp[sz++] = N; } while(sz){ while(sz && isPrime32(valtmp[sz-1])){ val[res] = valtmp[sz-1]; res++; sz--; } if(sz==0){ break; } n = valtmp[sz-1]; if(n < FACTOR_PRE_CALC_SIZE){ while(n > 1){ val[res++] = factor_hasprime_table[n]; n /= factor_hasprime_table[n]; } sz--; } else{ pf = Factor32_rho(n); valtmp[sz-1] = pf; valtmp[sz] = n / pf; sz++; } } sortA_L(res, val, mem); k = 0; for(i=(0);i<(res);i++){ if(k && fac[k-1] == val[i]){ fs[k-1]++; continue; } fac[k] = val[i]; fs[k] = 1; k++; } res = k; return res; } unsigned long long Factor64_rho(unsigned long long n){ static Rand rnd; const int step = 16; int i; int s; int nx; int mx; __uint128_t x; __uint128_t y; __uint128_t memo; __uint128_t c; __uint128_t m; unsigned long long g; long long lm; lm =min_L(1ULL<<30, n - 1); for(;;){ x = y = rnd.get(1LL, lm); c = rnd.get(1LL, lm); g = 1; for(nx=1;g==1;nx<<=1){ x = y; for(i=(0);i<(nx);i++){ y = (y * y + c) % n; } for(s=0;s<nx&&g==1;s+=step){ m = 1; memo = y; mx =min_L(step, nx-s); for(i=(0);i<(mx);i++){ y = (y * y + c) % n; if(x >= y){ m = (m * (x - y)) % n; } else{ m = (m * (y - x)) % n; } } g =GCD_L(n, m); if(g != 1){ if(g != n){ return g; } y = memo; for(;;){ y = (y * y + c) % n; if(x >= y){ m = x - y; } else{ m = y - x; } g =GCD_L(n, m); if(g == n){ break; } if(g != 1){ return g; } } } } } } return 0; } template<class R1, class R2> int Factor64(unsigned long long N, R1 fac[], R2 fs[], void *mem/* = wmem*/){ int res = 0; int sz = 0; int i; int k; unsigned long long*val; unsigned long long*valtmp; unsigned long long pf; unsigned long long n; if(N <= 1){ return 0; } walloc1d(&val, 128, &mem); walloc1d(&valtmp, 128, &mem); while(N%2==0){ val[res++] = 2; N /= 2; } while(N%3==0){ val[res++] = 3; N /= 3; } while(N%5==0){ val[res++] = 5; N /= 5; } if(N > 1){ valtmp[sz++] = N; } while(sz){ while(sz && isPrime64(valtmp[sz-1])){ val[res] = valtmp[sz-1]; res++; sz--; } if(sz==0){ break; } n = valtmp[sz-1]; if(n < FACTOR_PRE_CALC_SIZE){ while(n > 1){ val[res++] = factor_hasprime_table[n]; n /= factor_hasprime_table[n]; } sz--; } else if(n < (1ULL<<32)){ pf = Factor32_rho(n); valtmp[sz-1] = pf; valtmp[sz] = n / pf; sz++; } else{ pf = Factor64_rho(n); valtmp[sz-1] = pf; valtmp[sz] = n / pf; sz++; } } sortA_L(res, val, mem); k = 0; for(i=(0);i<(res);i++){ if(k && fac[k-1] == val[i]){ fs[k-1]++; continue; } fac[k] = val[i]; fs[k] = 1; k++; } res = k; return res; } void Factor32_init(void){ int i; int j; int k; k =Isqrt_f_L(FACTOR_PRE_CALC_SIZE); for(i=(2);i<(FACTOR_PRE_CALC_SIZE);i++){ factor_hasprime_table[i] = i; } for(i=(2);i<(k+1);i++){ if(factor_hasprime_table[i]==i){ for(j=(i*i);j<(FACTOR_PRE_CALC_SIZE);j+=(i)){ factor_hasprime_table[j] = i; } } } } // cLay version 20210819-1 [beta] // --- original code --- // ll N, K; // int fs; ll f[100]; int fn[100]; // Comb<Modint> comb; // { // Modint res = 1; // rd(N,K); // fs = Factor(N,f,fn); // rep(i,fs) res *= comb.H_s(K+1,fn[i]); // wt(res); // }