結果

問題 No.1659 Product of Divisors
ユーザー LayCurseLayCurse
提出日時 2021-08-27 21:23:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 10 ms / 2,000 ms
コード長 29,128 bytes
コンパイル時間 4,201 ms
コンパイル使用メモリ 247,228 KB
実行使用メモリ 12,284 KB
最終ジャッジ日時 2024-11-21 00:42:39
合計ジャッジ時間 4,758 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 10 ms
9,800 KB
testcase_01 AC 10 ms
9,932 KB
testcase_02 AC 10 ms
9,672 KB
testcase_03 AC 9 ms
9,800 KB
testcase_04 AC 8 ms
9,852 KB
testcase_05 AC 9 ms
9,796 KB
testcase_06 AC 10 ms
12,148 KB
testcase_07 AC 10 ms
11,716 KB
testcase_08 AC 9 ms
9,792 KB
testcase_09 AC 10 ms
10,784 KB
testcase_10 AC 9 ms
9,672 KB
testcase_11 AC 9 ms
9,672 KB
testcase_12 AC 9 ms
11,976 KB
testcase_13 AC 8 ms
9,800 KB
testcase_14 AC 10 ms
12,284 KB
testcase_15 AC 10 ms
9,928 KB
testcase_16 AC 9 ms
9,672 KB
testcase_17 AC 10 ms
9,924 KB
testcase_18 AC 10 ms
11,844 KB
testcase_19 AC 10 ms
9,672 KB
testcase_20 AC 10 ms
9,676 KB
testcase_21 AC 9 ms
9,932 KB
testcase_22 AC 10 ms
9,668 KB
testcase_23 AC 9 ms
9,676 KB
testcase_24 AC 9 ms
9,800 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
template<class T> struct cLtraits_identity{
  using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
  typename conditional<
    is_integral<T>::value,
    make_signed<T>,
    cLtraits_identity<T>
    >::type;
template <class S, class T> struct cLtraits_common_type{
  using tS = typename cLtraits_try_make_signed<S>::type;
  using tT = typename cLtraits_try_make_signed<T>::type;
  using type = typename common_type<tS,tT>::type;
}
;
void*wmem;
char memarr[96000000];
template<class S, class T> inline auto min_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
  return (typename cLtraits_common_type<S,T>::type) a <= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class S, class T> inline auto max_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
  return (typename cLtraits_common_type<S,T>::type) a >= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
  static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
  (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
  (*arr)=(T*)(*mem);
  (*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
  walloc1d(arr, x2-x1, mem);
  (*arr) -= x1;
}
#define ISPRIME_PRE_CALC_SIZE 1000000
char isPrime_prime_table[ISPRIME_PRE_CALC_SIZE];
template<class T> inline int isPrime(T n);
void isPrime32_init(void);
int isPrime32_sub(int b, unsigned n);
int isPrime32(unsigned n);
int isPrime64_sub(long long b, unsigned long long n);
int isPrime64(unsigned long long n);
#define FACTOR_PRE_CALC_SIZE 1000000
int factor_hasprime_table[FACTOR_PRE_CALC_SIZE];
template<class T, class R1, class R2> int Factor(T N, R1 fac[], R2 fs[], void *mem = wmem);
template<class T, class R1> int Factor(T N, R1 fac[], void *mem = wmem);
template<class T> int Factor(T N, void *mem = wmem);
unsigned Factor32_rho(unsigned n);
template<class R1, class R2> int Factor32(unsigned N, R1 fac[], R2 fs[], void *mem = wmem);
unsigned long long Factor64_rho(unsigned long long n);
template<class R1, class R2> int Factor64(unsigned long long N, R1 fac[], R2 fs[], void *mem = wmem);
void Factor32_init(void);
template<class T1> void sortA_L(int N, T1 a[], void *mem = wmem){
  sort(a, a+N);
}
struct Rand{
  unsigned x;
  unsigned y;
  unsigned z;
  unsigned w;
  Rand(void){
    x=123456789;
    y=362436069;
    z=521288629;
    w=(unsigned)time(NULL);
  }
  Rand(unsigned seed){
    x=123456789;
    y=362436069;
    z=521288629;
    w=seed;
  }
  inline unsigned get(void){
    unsigned t;
    t = (x^(x<<11));
    x=y;
    y=z;
    z=w;
    w = (w^(w>>19))^(t^(t>>8));
    return w;
  }
  inline double getUni(void){
    return get()/4294967296.0;
  }
  inline int get(int a){
    return (int)(a*getUni());
  }
  inline int get(int a, int b){
    return a+(int)((b-a+1)*getUni());
  }
  inline long long get(long long a){
    return(long long)(a*getUni());
  }
  inline long long get(long long a, long long b){
    return a+(long long)((b-a+1)*getUni());
  }
  inline double get(double a, double b){
    return a+(b-a)*getUni();
  }
  inline int getExp(int a){
    return(int)(exp(getUni()*log(a+1.0))-1.0);
  }
  inline int getExp(int a, int b){
    return a+(int)(exp(getUni()*log((b-a+1)+1.0))-1.0);
  }
}
;
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator++(){
    val++;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator--(){
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return *this;
  }
  inline Modint operator++(int a){
    Modint res(*this);
    val++;
    if(val >= MD){
      val -= MD;
    }
    return res;
  }
  inline Modint operator--(int a){
    Modint res(*this);
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return res;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(long long &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
template<class T> inline T pow2_L(T a){
  return a*a;
}
template<class T, class U> inline T GCD_L(T a, U b){
  T r;
  while(b){
    r=a;
    a=b;
    b=r%a;
  }
  return a;
}
template<class S, class T> inline S chmax(S &a, T b){
  if(a<b){
    a=b;
  }
  return a;
}
template<class T> struct Comb{
  int mem_fact;
  T*factri;
  T*ifactri;
  int mem_dfact;
  T*dfactri;
  int mem_pw2;
  int mem_pw3;
  int mem_pw10;
  int mem_rep1;
  T*pw2c;
  T*pw3c;
  T*pw10c;
  T*rep1c;
  int mem_ipw2;
  int mem_ipw3;
  int mem_ipw10;
  T*ipw2c;
  T*ipw3c;
  T*ipw10c;
  Comb(){
    mem_fact = 0;
    mem_dfact = 0;
    mem_pw2 = mem_pw3 = mem_pw10 = mem_rep1 = 0;
    mem_ipw2 = mem_ipw3 = mem_ipw10 = 0;
  }
  inline void expand_fact(int k){
    int i;
    if(k <= mem_fact){
      return;
    }
    chmax(k, 2 * mem_fact);
    if(mem_fact == 0){
      factri = (T*)malloc(k * sizeof(T));
      ifactri = (T*)malloc(k * sizeof(T));
      factri[0] = 1;
      for(i=(1);i<(k);i++){
        factri[i] = i * factri[i-1];
      }
      ifactri[k-1] = 1 / factri[k-1];
      for(i=(k-1)-1;i>=(0);i--){
        ifactri[i] = (i+1) * ifactri[i+1];
      }
    }
    else{
      factri = (T*)realloc(factri, k * sizeof(T));
      ifactri = (T*)realloc(ifactri, k * sizeof(T));
      for(i=(mem_fact);i<(k);i++){
        factri[i] = i * factri[i-1];
      }
      ifactri[k-1] = 1 / factri[k-1];
      for(i=(k-1)-1;i>=(mem_fact);i--){
        ifactri[i] = (i+1) * ifactri[i+1];
      }
    }
    mem_fact = k;
  }
  inline T fac(int k){
    if(mem_fact < k+1){
      expand_fact(k+1);
    }
    return factri[k];
  }
  inline T ifac(int k){
    if(mem_fact < k+1){
      expand_fact(k+1);
    }
    return ifactri[k];
  }
  inline T C(int a, int b){
    if(b < 0 || b > a){
      return 0;
    }
    if(mem_fact < a+1){
      expand_fact(a+1);
    }
    return factri[a] * ifactri[b] * ifactri[a-b];
  }
  inline T P(int a, int b){
    if(b < 0 || b > a){
      return 0;
    }
    if(mem_fact < a+1){
      expand_fact(a+1);
    }
    return factri[a] * ifactri[a-b];
  }
  inline T H(int a, int b){
    if(a==0 && b==0){
      return 1;
    }
    if(a <= 0 || b < 0){
      return 0;
    }
    if(mem_fact < a+b){
      expand_fact(a+b);
    }
    return C(a+b-1, b);
  }
  inline T Multinomial(int sz, int a[]){
    int i;
    int s = 0;
    T res;
    for(i=(0);i<(sz);i++){
      s += a[i];
    }
    if(mem_fact < s+1){
      expand_fact(s+1);
    }
    res = factri[s];
    for(i=(0);i<(sz);i++){
      res *= ifactri[a[i]];
    }
    return res;
  }
  inline T Multinomial(int a){
    return 1;
  }
  inline T Multinomial(int a, int b){
    if(mem_fact < a+b+1){
      expand_fact(a+b+1);
    }
    return factri[a+b] * ifactri[a] * ifactri[b];
  }
  inline T Multinomial(int a, int b, int c){
    if(mem_fact < a+b+c+1){
      expand_fact(a+b+c+1);
    }
    return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c];
  }
  inline T Multinomial(int a, int b, int c, int d){
    if(mem_fact < a+b+c+d+1){
      expand_fact(a+b+c+d+1);
    }
    return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d];
  }
  inline T Catalan(int n){
    if(n < 0){
      return 0;
    }
    if(mem_fact < 2*n+1){
      expand_fact(2*n+1);
    }
    return factri[2*n] * ifactri[n] * ifactri[n+1];
  }
  inline T Catalan(int n, int m, int k){
    if(k <= 0){
      return C(n+m, n);
    }
    if(n < k || m < k){
      return 0;
    }
    return C(n+m, m) - C(n+m, k-1);
  }
  inline T Catalan_s(long long n, long long m, long long k){
    if(k <= 0){
      return C_s(n+m, n);
    }
    if(n < k || m < k){
      return 0;
    }
    return C_s(n+m, m) - C_s(n+m, k-1);
  }
  inline T C_s(long long a, long long b){
    long long i;
    T res;
    if(b < 0 || b > a){
      return 0;
    }
    if(b > a - b){
      b = a - b;
    }
    res = 1;
    for(i=(0);i<(b);i++){
      res *= a - i;
      res /= i + 1;
    }
    return res;
  }
  inline T P_s(long long a, long long b){
    long long i;
    T res;
    if(b < 0 || b > a){
      return 0;
    }
    res = 1;
    for(i=(0);i<(b);i++){
      res *= a - i;
    }
    return res;
  }
  inline T H_s(long long a, long long b){
    if(a==0 && b==0){
      return 1;
    }
    if(a <= 0 || b < 0){
      return 0;
    }
    return C_s(a+b-1, b);
  }
  inline T per_s(long long n, long long k){
    T d;
    int m;
    if(n < 0 || k < 0){
      return 0;
    }
    if(n == k  &&  k == 0){
      return 1;
    }
    if(n == 0 || k == 0){
      return 0;
    }
    if(k==1){
      return 1;
    }
    if(k==2){
      d = n / 2;
      return d;
    }
    if(k==3){
      d = (n-1) / 6;
      m = (n-1) % 6;
      if(m==0){
        return 3 * d * d + d;
      }
      if(m==1){
        return 3 * d * d + 2 * d;
      }
      if(m==2){
        return 3 * d * d + 3 * d + 1;
      }
      if(m==3){
        return 3 * d * d + 4 * d + 1;
      }
      if(m==4){
        return 3 * d * d + 5 * d + 2;
      }
      if(m==5){
        return 3 * d * d + 6 * d + 3;
      }
    }
    assert(0 && "per_s should be k <= 3");
    return -1;
  }
  inline void expand_dfact(int k){
    int i;
    if(k <= mem_dfact){
      return;
    }
    chmax(k, 3);
    chmax(k, 2 * mem_dfact);
    if(mem_dfact==0){
      dfactri = (T*)malloc(k * sizeof(T));
      dfactri[0] = dfactri[1] = 1;
      for(i=(2);i<(k);i++){
        dfactri[i] = i * dfactri[i-2];
      }
    }
    else{
      dfactri = (T*)realloc(dfactri, k * sizeof(T));
      for(i=(mem_dfact);i<(k);i++){
        dfactri[i] = i * dfactri[i-2];
      }
    }
    mem_dfact = k;
  }
  inline void expand_pw2(int k){
    int i;
    if(k <= mem_pw2){
      return;
    }
    chmax(k, 2 * mem_pw2);
    if(mem_pw2==0){
      pw2c = (T*)malloc(k * sizeof(T));
      pw2c[0] = 1;
      for(i=(1);i<(k);i++){
        pw2c[i] = 2 * pw2c[i-1];
      }
    }
    else{
      pw2c = (T*)realloc(pw2c, k * sizeof(T));
      for(i=(mem_pw2);i<(k);i++){
        pw2c[i] = 2 * pw2c[i-1];
      }
    }
    mem_pw2 = k;
  }
  inline void expand_ipw2(int k){
    int i;
    if(k <= mem_ipw2){
      return;
    }
    chmax(k, 2);
    chmax(k, 2 * mem_ipw2);
    if(mem_ipw2==0){
      ipw2c = (T*)malloc(k * sizeof(T));
      ipw2c[0] = 1;
      ipw2c[1] = ipw2c[0] / 2;
      for(i=(1);i<(k);i++){
        ipw2c[i] = ipw2c[1] * ipw2c[i-1];
      }
    }
    else{
      ipw2c = (T*)realloc(ipw2c, k * sizeof(T));
      for(i=(mem_ipw2);i<(k);i++){
        ipw2c[i] = ipw2c[1] * ipw2c[i-1];
      }
    }
    mem_ipw2 = k;
  }
  inline void expand_pw3(int k){
    int i;
    if(k <= mem_pw3){
      return;
    }
    chmax(k, 2 * mem_pw3);
    if(mem_pw3==0){
      pw3c = (T*)malloc(k * sizeof(T));
      pw3c[0] = 1;
      for(i=(1);i<(k);i++){
        pw3c[i] = 3 * pw3c[i-1];
      }
    }
    else{
      pw3c = (T*)realloc(pw3c, k * sizeof(T));
      for(i=(mem_pw3);i<(k);i++){
        pw3c[i] = 3 * pw3c[i-1];
      }
    }
    mem_pw3 = k;
  }
  inline void expand_ipw3(int k){
    int i;
    if(k <= mem_ipw3){
      return;
    }
    chmax(k, 2);
    chmax(k, 2 * mem_ipw3);
    if(mem_ipw3==0){
      ipw3c = (T*)malloc(k * sizeof(T));
      ipw3c[0] = 1;
      ipw3c[1] = ipw3c[0] / 3;
      for(i=(1);i<(k);i++){
        ipw3c[i] = ipw3c[1] * ipw3c[i-1];
      }
    }
    else{
      ipw3c = (T*)realloc(ipw3c, k * sizeof(T));
      for(i=(mem_ipw3);i<(k);i++){
        ipw3c[i] = ipw3c[1] * ipw3c[i-1];
      }
    }
    mem_ipw3 = k;
  }
  inline void expand_pw10(int k){
    int i;
    if(k <= mem_pw10){
      return;
    }
    chmax(k, 2 * mem_pw10);
    if(mem_pw10==0){
      pw10c = (T*)malloc(k * sizeof(T));
      pw10c[0] = 1;
      for(i=(1);i<(k);i++){
        pw10c[i] = 10 * pw10c[i-1];
      }
    }
    else{
      pw10c = (T*)realloc(pw10c, k * sizeof(T));
      for(i=(mem_pw10);i<(k);i++){
        pw10c[i] = 10 * pw10c[i-1];
      }
    }
    mem_pw10 = k;
  }
  inline void expand_ipw10(int k){
    int i;
    if(k <= mem_ipw10){
      return;
    }
    chmax(k, 2);
    chmax(k, 2 * mem_ipw10);
    if(mem_ipw10==0){
      ipw10c = (T*)malloc(k * sizeof(T));
      ipw10c[0] = 1;
      ipw10c[1] = ipw10c[0] / 10;
      for(i=(1);i<(k);i++){
        ipw10c[i] = ipw10c[1] * ipw10c[i-1];
      }
    }
    else{
      ipw10c = (T*)realloc(ipw10c, k * sizeof(T));
      for(i=(mem_ipw10);i<(k);i++){
        ipw10c[i] = ipw10c[1] * ipw10c[i-1];
      }
    }
    mem_ipw10 = k;
  }
  inline void expand_rep1(int k){
    int i;
    if(k <= mem_rep1){
      return;
    }
    chmax(k, 2 * mem_rep1);
    if(mem_rep1==0){
      rep1c = (T*)malloc(k * sizeof(T));
      rep1c[0] = 0;
      for(i=(1);i<(k);i++){
        rep1c[i] = 10 * rep1c[i-1] + 1;
      }
    }
    else{
      rep1c = (T*)realloc(rep1c, k * sizeof(T));
      for(i=(mem_rep1);i<(k);i++){
        rep1c[i] = 10 * rep1c[i-1] + 1;
      }
    }
    mem_rep1 = k;
  }
  inline T dfac(int k){
    if(k >= 0){
      if(mem_dfact < k+1){
        expand_dfact(k+1);
      }
      return dfactri[k];
    }
    if(k==-1){
      return 1;
    }
    k = - k - 2;
    if(k % 4 == 1){
      return 1 / (-dfac(k));
    }
    return 1 / dfac(k);
  }
  inline T pw2(int k){
    if(k >= 0){
      if(mem_pw2 < k+1){
        expand_pw2(k+1);
      }
      return pw2c[k];
    }
    else{
      k = -k;
      if(mem_ipw2 < k+1){
        expand_ipw2(k+1);
      }
      return ipw2c[k];
    }
  }
  inline T pw3(int k){
    if(k >= 0){
      if(mem_pw3 < k+1){
        expand_pw3(k+1);
      }
      return pw3c[k];
    }
    else{
      k = -k;
      if(mem_ipw3 < k+1){
        expand_ipw3(k+1);
      }
      return ipw3c[k];
    }
  }
  inline T pw10(int k){
    if(k >= 0){
      if(mem_pw10 < k+1){
        expand_pw10(k+1);
      }
      return pw10c[k];
    }
    else{
      k = -k;
      if(mem_ipw10 < k+1){
        expand_ipw10(k+1);
      }
      return ipw10c[k];
    }
  }
  inline T repunit(int k){
    if(mem_rep1 < k+1){
      expand_rep1(k+1);
    }
    return rep1c[k];
  }
}
;
template<> inline Modint Comb<Modint>::C_s(long long a, long long b){
  long long i;
  Modint res;
  Modint d;
  if(b < 0 || b > a){
    return 0;
  }
  if(b > a - b){
    b = a - b;
  }
  res = d = 1;
  for(i=(0);i<(b);i++){
    res *= a - i;
    d *= i + 1;
  }
  return res / d;
}
inline long long Isqrt_f_L(const long long n){
  long long r = sqrt(n);
  r =max_L(r-2, 0);
  while((pow2_L((r+1)))<= n ){
    r++;
  }
  return r;
}
long long N;
long long K;
int fs;
long long f[100];
int fn[100];
Comb<Modint> comb;
int main(){
  int i;
  wmem = memarr;
  {
    isPrime32_init();
  }
  {
    Factor32_init();
  }
  Modint res = 1;
  rd(N);
  rd(K);
  fs = Factor(N,f,fn);
  for(i=(0);i<(fs);i++){
    res *= comb.H_s(K+1,fn[i]);
  }
  wt_L(res);
  wt_L('\n');
  return 0;
}
template<class T> inline int isPrime(T n){
  T i;
  if(n<=1){
    return 0;
  }
  if(n <= (1ULL<<32) - 1){
    return isPrime32(n);
  }
  if(n <= (1ULL<<63) - 1 + (1ULL<<63)){
    return isPrime64(n);
  }
  if(n<=3){
    return 1;
  }
  if(n%2==0){
    return 0;
  }
  for(i=3;i*i<=n;i+=2){
    if(n%i==0){
      return 0;
    }
  }
  return 1;
}
int isPrime32_sub(int b, unsigned n){
  unsigned i;
  unsigned t = 0;
  unsigned u = n-1;
  unsigned long long nw;
  unsigned long long nx;
  while(!(u&1)){
    t++;
    u >>= 1;
  }
  nw = 1;
  nx = b % n;
  while(u){
    if(u&1){
      nw = (nw * nx) % n;
    }
    nx = (nx * nx) % n;
    u >>= 1;
  }
  for(i=(0);i<(t);i++){
    nx = (nw * nw) % n;
    if(nx == 1 && nw != 1 && nw != n-1){
      return 0;
    }
    nw = nx;
  }
  if(nw == 1){
    return 1;
  }
  return 0;
}
int isPrime32(unsigned n){
  if(n < 100000){
    return isPrime_prime_table[n];
  }
  if(n % 2 == 0){
    return 0;
  }
  if(!isPrime32_sub(2,n)){
    return 0;
  }
  if(n<=1000000){
    if(!isPrime32_sub(3,n)){
      return 0;
    }
  }
  else{
    if(!isPrime32_sub(7,n)){
      return 0;
    }
    if(!isPrime32_sub(61,n)){
      return 0;
    }
  }
  return 1;
}
int isPrime64_sub(long long b, unsigned long long n){
  unsigned long long i;
  unsigned long long t = 0;
  unsigned long long u = n-1;
  __uint128_t nw;
  __uint128_t nx;
  while(!(u&1)){
    t++;
    u >>= 1;
  }
  nw = 1;
  nx = b % n;
  while(u){
    if(u&1){
      nw = (nw * nx) % n;
    }
    nx = (nx * nx) % n;
    u >>= 1;
  }
  for(i=(0);i<(t);i++){
    nx = (nw * nw) % n;
    if(nx == 1 && nw != 1 && nw != n-1){
      return 0;
    }
    nw = nx;
  }
  if(nw == 1){
    return 1;
  }
  return 0;
}
int isPrime64(unsigned long long n){
  if(n < 100000){
    return isPrime_prime_table[n];
  }
  if(n < (1ULL<<32)){
    return isPrime32(n);
  }
  if(n % 2 == 0){
    return 0;
  }
  if(!isPrime64_sub(2,n)){
    return 0;
  }
  if(n <= 21652684502221ULL){
    if(!isPrime64_sub(1215,n)){
      return 0;
    }
    if(!isPrime64_sub(34862,n)){
      return 0;
    }
    if(!isPrime64_sub(574237825,n)){
      return 0;
    }
  }
  else{
    if(!isPrime64_sub(325,n)){
      return 0;
    }
    if(!isPrime64_sub(9375,n)){
      return 0;
    }
    if(!isPrime64_sub(28178,n)){
      return 0;
    }
    if(!isPrime64_sub(450775,n)){
      return 0;
    }
    if(!isPrime64_sub(9780504,n)){
      return 0;
    }
    if(!isPrime64_sub(1795265022,n)){
      return 0;
    }
  }
  return 1;
}
void isPrime32_init(void){
  int i;
  int j;
  int k;
  k =Isqrt_f_L(ISPRIME_PRE_CALC_SIZE);
  for(i=(2);i<(ISPRIME_PRE_CALC_SIZE);i++){
    isPrime_prime_table[i] = 1;
  }
  for(i=(2);i<(k+1);i++){
    if(isPrime_prime_table[i]){
      for(j=(i*i);j<(ISPRIME_PRE_CALC_SIZE);j+=(i)){
        isPrime_prime_table[j] = 0;
      }
    }
  }
}
template<class T, class R1, class R2> int Factor(T N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
  T i;
  int sz = 0;
  if(N <= 1){
    return sz;
  }
  if(N <= (1ULL<<32) - 1){
    return Factor32(N, fac, fs, mem);
  }
  if(N <= (1ULL<<63) - 1 + (1ULL<<63)){
    return Factor64(N, fac, fs, mem);
  }
  if(N%2==0){
    fac[sz] = 2;
    fs[sz] = 1;
    N /= 2;
    while(N%2==0){
      N /= 2;
      fs[sz]++;
    }
    sz++;
  }
  for(i=3;i*i<=N;i+=2){
    if(N%i==0){
      fac[sz] = i;
      fs[sz] = 1;
      N /= i;
      while(N%i==0){
        N /= i;
        fs[sz]++;
      }
      sz++;
    }
  }
  if(N > 1){
    fac[sz] = N;
    fs[sz] = 1;
    sz++;
  }
  return sz;
}
template<class T, class R1> int Factor(T N, R1 fac[], void *mem/* = wmem*/){
  int*fs;
  walloc1d(&fs,128,&mem);
  return Factor(N, fac, fs, mem);
}
template<class T> int Factor(T N, void *mem/* = wmem*/){
  T*fac;
  int*fs;
  walloc1d(&fac,128,&mem);
  walloc1d(&fs,128,&mem);
  return Factor(N, fac, fs, mem);
}
unsigned Factor32_rho(unsigned n){
  static Rand rnd;
  const int step = 16;
  int i;
  int s;
  int nx;
  int mx;
  unsigned long long x;
  unsigned long long y;
  unsigned long long memo;
  unsigned long long c;
  unsigned long long m;
  unsigned g;
  long long lm;
  lm =min_L(1ULL<<30, n - 1);
  for(;;){
    x = y = rnd.get(1LL, lm);
    c = rnd.get(1LL, lm);
    g = 1;
    for(nx=1;g==1;nx<<=1){
      x = y;
      for(i=(0);i<(nx);i++){
        y = (y * y + c) % n;
      }
      for(s=0;s<nx&&g==1;s+=step){
        m = 1;
        memo = y;
        mx =min_L(step, nx-s);
        for(i=(0);i<(mx);i++){
          y = (y * y + c) % n;
          if(x >= y){
            m = (m * (x - y)) % n;
          }
          else{
            m = (m * (y - x)) % n;
          }
        }
        g =GCD_L(n, m);
        if(g != 1){
          if(g != n){
            return g;
          }
          y = memo;
          for(;;){
            y = (y * y + c) % n;
            if(x >= y){
              m = x - y;
            }
            else{
              m = y - x;
            }
            g =GCD_L(n, m);
            if(g == n){
              break;
            }
            if(g != 1){
              return g;
            }
          }
        }
      }
    }
  }
  return 0;
}
template<class R1, class R2> int Factor32(unsigned N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
  int res = 0;
  int sz = 0;
  int i;
  int k;
  unsigned*val;
  unsigned*valtmp;
  unsigned pf;
  unsigned n;
  if(N <= 1){
    return 0;
  }
  walloc1d(&val, 128, &mem);
  walloc1d(&valtmp, 128, &mem);
  while(N%2==0){
    val[res++] = 2;
    N /= 2;
  }
  while(N%3==0){
    val[res++] = 3;
    N /= 3;
  }
  while(N%5==0){
    val[res++] = 5;
    N /= 5;
  }
  if(N > 1){
    valtmp[sz++] = N;
  }
  while(sz){
    while(sz && isPrime32(valtmp[sz-1])){
      val[res] = valtmp[sz-1];
      res++;
      sz--;
    }
    if(sz==0){
      break;
    }
    n = valtmp[sz-1];
    if(n < FACTOR_PRE_CALC_SIZE){
      while(n > 1){
        val[res++] = factor_hasprime_table[n];
        n /= factor_hasprime_table[n];
      }
      sz--;
    }
    else{
      pf = Factor32_rho(n);
      valtmp[sz-1] = pf;
      valtmp[sz] = n / pf;
      sz++;
    }
  }
  sortA_L(res, val, mem);
  k = 0;
  for(i=(0);i<(res);i++){
    if(k && fac[k-1] == val[i]){
      fs[k-1]++;
      continue;
    }
    fac[k] = val[i];
    fs[k] = 1;
    k++;
  }
  res = k;
  return res;
}
unsigned long long Factor64_rho(unsigned long long n){
  static Rand rnd;
  const int step = 16;
  int i;
  int s;
  int nx;
  int mx;
  __uint128_t x;
  __uint128_t y;
  __uint128_t memo;
  __uint128_t c;
  __uint128_t m;
  unsigned long long g;
  long long lm;
  lm =min_L(1ULL<<30, n - 1);
  for(;;){
    x = y = rnd.get(1LL, lm);
    c = rnd.get(1LL, lm);
    g = 1;
    for(nx=1;g==1;nx<<=1){
      x = y;
      for(i=(0);i<(nx);i++){
        y = (y * y + c) % n;
      }
      for(s=0;s<nx&&g==1;s+=step){
        m = 1;
        memo = y;
        mx =min_L(step, nx-s);
        for(i=(0);i<(mx);i++){
          y = (y * y + c) % n;
          if(x >= y){
            m = (m * (x - y)) % n;
          }
          else{
            m = (m * (y - x)) % n;
          }
        }
        g =GCD_L(n, m);
        if(g != 1){
          if(g != n){
            return g;
          }
          y = memo;
          for(;;){
            y = (y * y + c) % n;
            if(x >= y){
              m = x - y;
            }
            else{
              m = y - x;
            }
            g =GCD_L(n, m);
            if(g == n){
              break;
            }
            if(g != 1){
              return g;
            }
          }
        }
      }
    }
  }
  return 0;
}
template<class R1, class R2> int Factor64(unsigned long long N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
  int res = 0;
  int sz = 0;
  int i;
  int k;
  unsigned long long*val;
  unsigned long long*valtmp;
  unsigned long long pf;
  unsigned long long n;
  if(N <= 1){
    return 0;
  }
  walloc1d(&val, 128, &mem);
  walloc1d(&valtmp, 128, &mem);
  while(N%2==0){
    val[res++] = 2;
    N /= 2;
  }
  while(N%3==0){
    val[res++] = 3;
    N /= 3;
  }
  while(N%5==0){
    val[res++] = 5;
    N /= 5;
  }
  if(N > 1){
    valtmp[sz++] = N;
  }
  while(sz){
    while(sz && isPrime64(valtmp[sz-1])){
      val[res] = valtmp[sz-1];
      res++;
      sz--;
    }
    if(sz==0){
      break;
    }
    n = valtmp[sz-1];
    if(n < FACTOR_PRE_CALC_SIZE){
      while(n > 1){
        val[res++] = factor_hasprime_table[n];
        n /= factor_hasprime_table[n];
      }
      sz--;
    }
    else if(n < (1ULL<<32)){
      pf = Factor32_rho(n);
      valtmp[sz-1] = pf;
      valtmp[sz] = n / pf;
      sz++;
    }
    else{
      pf = Factor64_rho(n);
      valtmp[sz-1] = pf;
      valtmp[sz] = n / pf;
      sz++;
    }
  }
  sortA_L(res, val, mem);
  k = 0;
  for(i=(0);i<(res);i++){
    if(k && fac[k-1] == val[i]){
      fs[k-1]++;
      continue;
    }
    fac[k] = val[i];
    fs[k] = 1;
    k++;
  }
  res = k;
  return res;
}
void Factor32_init(void){
  int i;
  int j;
  int k;
  k =Isqrt_f_L(FACTOR_PRE_CALC_SIZE);
  for(i=(2);i<(FACTOR_PRE_CALC_SIZE);i++){
    factor_hasprime_table[i] = i;
  }
  for(i=(2);i<(k+1);i++){
    if(factor_hasprime_table[i]==i){
      for(j=(i*i);j<(FACTOR_PRE_CALC_SIZE);j+=(i)){
        factor_hasprime_table[j] = i;
      }
    }
  }
}
// cLay version 20210819-1 [beta]

// --- original code ---
// ll N, K;
// int fs; ll f[100]; int fn[100];
// Comb<Modint> comb;
// {
//   Modint res = 1;
//   rd(N,K);
//   fs = Factor(N,f,fn);
//   rep(i,fs) res *= comb.H_s(K+1,fn[i]);
//   wt(res);
// }
0