結果
問題 | No.1659 Product of Divisors |
ユーザー | chineristAC |
提出日時 | 2021-08-27 21:39:43 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 53 ms / 2,000 ms |
コード長 | 4,192 bytes |
コンパイル時間 | 227 ms |
コンパイル使用メモリ | 82,208 KB |
実行使用メモリ | 56,960 KB |
最終ジャッジ日時 | 2024-11-21 01:17:00 |
合計ジャッジ時間 | 2,603 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 50 ms
56,576 KB |
testcase_01 | AC | 50 ms
56,576 KB |
testcase_02 | AC | 50 ms
56,320 KB |
testcase_03 | AC | 50 ms
56,704 KB |
testcase_04 | AC | 48 ms
56,576 KB |
testcase_05 | AC | 50 ms
56,704 KB |
testcase_06 | AC | 50 ms
56,576 KB |
testcase_07 | AC | 49 ms
56,704 KB |
testcase_08 | AC | 50 ms
56,448 KB |
testcase_09 | AC | 49 ms
56,320 KB |
testcase_10 | AC | 48 ms
56,448 KB |
testcase_11 | AC | 49 ms
56,576 KB |
testcase_12 | AC | 51 ms
56,704 KB |
testcase_13 | AC | 48 ms
56,448 KB |
testcase_14 | AC | 49 ms
56,576 KB |
testcase_15 | AC | 50 ms
56,448 KB |
testcase_16 | AC | 50 ms
56,576 KB |
testcase_17 | AC | 49 ms
56,704 KB |
testcase_18 | AC | 51 ms
56,448 KB |
testcase_19 | AC | 50 ms
56,576 KB |
testcase_20 | AC | 49 ms
56,832 KB |
testcase_21 | AC | 50 ms
56,832 KB |
testcase_22 | AC | 51 ms
56,704 KB |
testcase_23 | AC | 52 ms
56,320 KB |
testcase_24 | AC | 53 ms
56,960 KB |
ソースコード
def floor_sum(n: int, m: int, a: int, b: int) -> int: ans = 0 if a >= m: ans += (n - 1) * n * (a // m) // 2 a %= m if b >= m: ans += n * (b // m) b %= m y_max = (a * n + b) // m x_max = y_max * m - b if y_max == 0: return ans ans += (n - (x_max + a - 1) // a) * y_max ans += floor_sum(y_max, a, m, (a - x_max % a) % a) return ans def divisors(M): d=[] i=1 while M>=i**2: if M%i==0: d.append(i) if i**2!=M: d.append(M//i) i=i+1 return d def popcount(x): x = x - ((x >> 1) & 0x55555555) x = (x & 0x33333333) + ((x >> 2) & 0x33333333) x = (x + (x >> 4)) & 0x0f0f0f0f x = x + (x >> 8) x = x + (x >> 16) return x & 0x0000007f def eratosthenes(n): res=[0 for i in range(n+1)] prime=set([]) for i in range(2,n+1): if not res[i]: prime.add(i) for j in range(1,n//i+1): res[i*j]=1 return prime def factorization(n): res=[] for p in prime: if n%p==0: while n%p==0: n//=p res.append(p) if n!=1: res.append(n) return res def euler_phi(n): res = n for x in range(2,n+1): if x ** 2 > n: break if n%x==0: res = res//x * (x-1) while n%x==0: n //= x if n!=1: res = res//n * (n-1) return res def ind(b,n): res=0 while n%b==0: res+=1 n//=b return res def isPrimeMR(n): if n==1: return 0 d = n - 1 d = d // (d & -d) L = [2, 3, 5, 7, 11, 13, 17] if n in L: return 1 for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): from math import gcd m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def divisors(n): res = [1] prime = primeFactor(n) for p in prime: newres = [] for d in res: for j in range(prime[p]+1): newres.append(d*p**j) res = newres res.sort() return res import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import gcd,log input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) mod = 10**9 + 7 N,K = mi() prime = primeFactor(N) res = 1 for p in prime: e = prime[p] for i in range(e): res *= (e+K-i) res %= mod res *= pow(i+1,mod-2,mod) res %= mod print(res)