結果
問題 | No.1659 Product of Divisors |
ユーザー |
|
提出日時 | 2021-08-27 21:52:25 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 13 ms / 2,000 ms |
コード長 | 8,293 bytes |
コンパイル時間 | 2,139 ms |
コンパイル使用メモリ | 207,284 KB |
最終ジャッジ日時 | 2025-01-24 02:54:56 |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 23 |
ソースコード
#line 1 "main.cpp"#include <bits/stdc++.h>#line 2 "/home/ubuntu/Library/utils/macros.hpp"#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))#define ALL(x) std::begin(x), std::end(x)#line 4 "/home/ubuntu/Library/modulus/modpow.hpp"inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);uint_fast64_t y = 1;for (; k; k >>= 1) {if (k & 1) (y *= x) %= MOD;(x *= x) %= MOD;}assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);return y;}#line 5 "/home/ubuntu/Library/modulus/modinv.hpp"inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {assert (0 <= value and value < MOD);if (value == 0) return -1;int64_t a = value, b = MOD;int64_t x = 0, y = 1;for (int64_t u = 1, v = 0; a; ) {int64_t q = b / a;x -= q * u; std::swap(x, u);y -= q * v; std::swap(y, v);b -= q * a; std::swap(b, a);}if (not (value * x + MOD * y == b and b == 1)) return -1;if (x < 0) x += MOD;assert (0 <= x and x < MOD);return x;}inline int32_t modinv(int32_t x, int32_t MOD) {int32_t y = modinv_nocheck(x, MOD);assert (y != -1);return y;}#line 6 "/home/ubuntu/Library/modulus/mint.hpp"/*** @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$*/template <int32_t MOD>struct mint {int32_t value;mint() : value() {}mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}mint(int32_t value_, std::nullptr_t) : value(value_) {}explicit operator bool() const { return value; }inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }inline bool operator == (mint<MOD> other) const { return value == other.value; }inline bool operator != (mint<MOD> other) const { return value != other.value; }inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }};template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }#line 7 "/home/ubuntu/Library/number/primes.hpp"struct prepared_primes {int size;std::vector<int> sieve;std::vector<int> primes;/*** @note O(size)*/prepared_primes(int size_): size(size_) {sieve.resize(size);REP3 (p, 2, size) if (sieve[p] == 0) {primes.push_back(p);for (int k = p; k < size; k += p) {if (sieve[k] == 0) {sieve[k] = p;}}}}/*** @note let k be the length of the result, O(k) if n < size; O(\sqrt{n} + k) if size <= n < size^2*/std::vector<int64_t> list_prime_factors(int64_t n) const {assert (1 <= n and n < (int64_t)size * size);std::vector<int64_t> result;// trial division for large partfor (int p : primes) {if (n < size or n < (int64_t)p * p) {break;}while (n % p == 0) {n /= p;result.push_back(p);}}// small partif (n == 1) {// nop} else if (n < size) {while (n != 1) {result.push_back(sieve[n]);n /= sieve[n];}} else {result.push_back(n);}assert (std::is_sorted(ALL(result)));return result;}std::vector<int64_t> list_all_factors(int64_t n) const {auto p = list_prime_factors(n);std::vector<int64_t> d;d.push_back(1);for (int l = 0; l < p.size(); ) {int r = l + 1;while (r < p.size() and p[r] == p[l]) ++ r;int n = d.size();REP (k1, r - l) {REP (k2, n) {d.push_back(d[d.size() - n] * p[l]);}}l = r;}return d;}/*** @note O(1) if n < size; O(sqrt n) if size <= n < size^2*/bool is_prime(int64_t n) const {assert (1 <= n and n < (int64_t)size * size);if (n < size) {return sieve[n] == n;}for (int p : primes) {if (n < (int64_t)p * p) {break;}if (n % p == 0) {return false;}}return true;}};#line 7 "/home/ubuntu/Library/number/primes_extra.hpp"std::map<int64_t, int> list_prime_factors_as_map(const prepared_primes& primes, int64_t n) {std::map<int64_t, int> cnt;for (int64_t p : primes.list_prime_factors(n)) {++ cnt[p];}return cnt;}int64_t euler_totient(const prepared_primes& primes, int64_t n) {int64_t phi = 1;int64_t last = -1;for (int64_t p : primes.list_prime_factors(n)) {if (last != p) {last = p;phi *= p - 1;} else {phi *= p;}}return phi;}#line 5 "/home/ubuntu/Library/modulus/choose_simple.hpp"/*** @brief combination / 組合せ ${} _ n C _ r$ (愚直 $O(r)$)*/template <int32_t MOD>mint<MOD> choose_simple(int64_t n, int32_t r) {assert (0 <= r and r <= n);mint<MOD> num = 1;mint<MOD> den = 1;REP (i, r) {num *= n - i;den *= i + 1;}return num / den;}#line 5 "/home/ubuntu/Library/modulus/multichoose_simple.hpp"/*** @brief 重複組合せ ${} _ n H _ r = {} _ {n + r - 1} C _ r$ (愚直 $O(r)$)*/template <int32_t MOD>mint<MOD> multichoose_simple(int64_t n, int32_t r) {assert (0 <= n and 0 <= r);if (n == 0 and r == 0) return 1;return choose_simple<MOD>(n + r - 1, r);}#line 7 "main.cpp"using namespace std;prepared_primes primes(1e6 + 100);constexpr int64_t MOD = 1000000007;mint<MOD> solve(int64_t n, int64_t k) {mint<MOD> ans = 1;for (auto [p, e] : list_prime_factors_as_map(primes, n)) {// ans *= multichoose_simple<MOD>(k, e);mint<MOD> y = 0;REP (x, e + 1) {y += multichoose_simple<MOD>(k, x);}ans *= y;}return ans;}// generated by oj-template v4.8.0 (https://github.com/online-judge-tools/template-generator)int main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);int64_t N, K;std::cin >> N >> K;auto ans = solve(N, K);std::cout << ans << '\n';return 0;}