結果

問題 No.1659 Product of Divisors
ユーザー kimiyuki
提出日時 2021-08-27 21:52:25
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 13 ms / 2,000 ms
コード長 8,293 bytes
コンパイル時間 2,139 ms
コンパイル使用メモリ 207,284 KB
最終ジャッジ日時 2025-01-24 02:54:56
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "main.cpp"
#include <bits/stdc++.h>
#line 2 "/home/ubuntu/Library/utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 4 "/home/ubuntu/Library/modulus/modpow.hpp"
inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);
uint_fast64_t y = 1;
for (; k; k >>= 1) {
if (k & 1) (y *= x) %= MOD;
(x *= x) %= MOD;
}
assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);
return y;
}
#line 5 "/home/ubuntu/Library/modulus/modinv.hpp"
inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {
assert (0 <= value and value < MOD);
if (value == 0) return -1;
int64_t a = value, b = MOD;
int64_t x = 0, y = 1;
for (int64_t u = 1, v = 0; a; ) {
int64_t q = b / a;
x -= q * u; std::swap(x, u);
y -= q * v; std::swap(y, v);
b -= q * a; std::swap(b, a);
}
if (not (value * x + MOD * y == b and b == 1)) return -1;
if (x < 0) x += MOD;
assert (0 <= x and x < MOD);
return x;
}
inline int32_t modinv(int32_t x, int32_t MOD) {
int32_t y = modinv_nocheck(x, MOD);
assert (y != -1);
return y;
}
#line 6 "/home/ubuntu/Library/modulus/mint.hpp"
/**
* @brief quotient ring / $\mathbb{Z}/n\mathbb{Z}$
*/
template <int32_t MOD>
struct mint {
int32_t value;
mint() : value() {}
mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
mint(int32_t value_, std::nullptr_t) : value(value_) {}
explicit operator bool() const { return value; }
inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }
inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }
inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }
inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }
inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }
inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }
inline bool operator == (mint<MOD> other) const { return value == other.value; }
inline bool operator != (mint<MOD> other) const { return value != other.value; }
inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }
inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }
inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }
inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }
};
template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }
template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }
template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }
template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }
template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }
template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }
#line 7 "/home/ubuntu/Library/number/primes.hpp"
struct prepared_primes {
int size;
std::vector<int> sieve;
std::vector<int> primes;
/**
* @note O(size)
*/
prepared_primes(int size_)
: size(size_) {
sieve.resize(size);
REP3 (p, 2, size) if (sieve[p] == 0) {
primes.push_back(p);
for (int k = p; k < size; k += p) {
if (sieve[k] == 0) {
sieve[k] = p;
}
}
}
}
/**
* @note let k be the length of the result, O(k) if n < size; O(\sqrt{n} + k) if size <= n < size^2
*/
std::vector<int64_t> list_prime_factors(int64_t n) const {
assert (1 <= n and n < (int64_t)size * size);
std::vector<int64_t> result;
// trial division for large part
for (int p : primes) {
if (n < size or n < (int64_t)p * p) {
break;
}
while (n % p == 0) {
n /= p;
result.push_back(p);
}
}
// small part
if (n == 1) {
// nop
} else if (n < size) {
while (n != 1) {
result.push_back(sieve[n]);
n /= sieve[n];
}
} else {
result.push_back(n);
}
assert (std::is_sorted(ALL(result)));
return result;
}
std::vector<int64_t> list_all_factors(int64_t n) const {
auto p = list_prime_factors(n);
std::vector<int64_t> d;
d.push_back(1);
for (int l = 0; l < p.size(); ) {
int r = l + 1;
while (r < p.size() and p[r] == p[l]) ++ r;
int n = d.size();
REP (k1, r - l) {
REP (k2, n) {
d.push_back(d[d.size() - n] * p[l]);
}
}
l = r;
}
return d;
}
/**
* @note O(1) if n < size; O(sqrt n) if size <= n < size^2
*/
bool is_prime(int64_t n) const {
assert (1 <= n and n < (int64_t)size * size);
if (n < size) {
return sieve[n] == n;
}
for (int p : primes) {
if (n < (int64_t)p * p) {
break;
}
if (n % p == 0) {
return false;
}
}
return true;
}
};
#line 7 "/home/ubuntu/Library/number/primes_extra.hpp"
std::map<int64_t, int> list_prime_factors_as_map(const prepared_primes& primes, int64_t n) {
std::map<int64_t, int> cnt;
for (int64_t p : primes.list_prime_factors(n)) {
++ cnt[p];
}
return cnt;
}
int64_t euler_totient(const prepared_primes& primes, int64_t n) {
int64_t phi = 1;
int64_t last = -1;
for (int64_t p : primes.list_prime_factors(n)) {
if (last != p) {
last = p;
phi *= p - 1;
} else {
phi *= p;
}
}
return phi;
}
#line 5 "/home/ubuntu/Library/modulus/choose_simple.hpp"
/**
* @brief combination / ${} _ n C _ r$ ( $O(r)$)
*/
template <int32_t MOD>
mint<MOD> choose_simple(int64_t n, int32_t r) {
assert (0 <= r and r <= n);
mint<MOD> num = 1;
mint<MOD> den = 1;
REP (i, r) {
num *= n - i;
den *= i + 1;
}
return num / den;
}
#line 5 "/home/ubuntu/Library/modulus/multichoose_simple.hpp"
/**
* @brief ${} _ n H _ r = {} _ {n + r - 1} C _ r$ ( $O(r)$)
*/
template <int32_t MOD>
mint<MOD> multichoose_simple(int64_t n, int32_t r) {
assert (0 <= n and 0 <= r);
if (n == 0 and r == 0) return 1;
return choose_simple<MOD>(n + r - 1, r);
}
#line 7 "main.cpp"
using namespace std;
prepared_primes primes(1e6 + 100);
constexpr int64_t MOD = 1000000007;
mint<MOD> solve(int64_t n, int64_t k) {
mint<MOD> ans = 1;
for (auto [p, e] : list_prime_factors_as_map(primes, n)) {
// ans *= multichoose_simple<MOD>(k, e);
mint<MOD> y = 0;
REP (x, e + 1) {
y += multichoose_simple<MOD>(k, x);
}
ans *= y;
}
return ans;
}
// generated by oj-template v4.8.0 (https://github.com/online-judge-tools/template-generator)
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int64_t N, K;
std::cin >> N >> K;
auto ans = solve(N, K);
std::cout << ans << '\n';
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0