結果
問題 | No.1659 Product of Divisors |
ユーザー | hotman78 |
提出日時 | 2021-08-27 22:11:45 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 23,875 bytes |
コンパイル時間 | 4,683 ms |
コンパイル使用メモリ | 256,976 KB |
実行使用メモリ | 1,145,744 KB |
最終ジャッジ日時 | 2024-11-21 02:45:07 |
合計ジャッジ時間 | 30,654 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,636 KB |
testcase_01 | MLE | - |
testcase_02 | AC | 2 ms
13,640 KB |
testcase_03 | MLE | - |
testcase_04 | AC | 81 ms
13,640 KB |
testcase_05 | MLE | - |
testcase_06 | AC | 26 ms
13,640 KB |
testcase_07 | MLE | - |
testcase_08 | AC | 2 ms
13,640 KB |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | MLE | - |
testcase_12 | WA | - |
testcase_13 | AC | 2 ms
6,692 KB |
testcase_14 | WA | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
testcase_20 | MLE | - |
testcase_21 | MLE | - |
testcase_22 | MLE | - |
testcase_23 | MLE | - |
testcase_24 | MLE | - |
ソースコード
#line 2 "cpplib/util/template.hpp" #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #pragma GCC target("avx2") #include<bits/stdc++.h> using namespace std; struct __INIT__{__INIT__(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}}__INIT__; typedef long long lint; #define INF (1LL<<60) #define IINF (1<<30) #define EPS (1e-10) #define endl ('\n') typedef vector<lint> vec; typedef vector<vector<lint>> mat; typedef vector<vector<vector<lint>>> mat3; typedef vector<string> svec; typedef vector<vector<string>> smat; template<typename T>using V=vector<T>; template<typename T>using VV=V<V<T>>; template<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i;f=1;}cout<<endl;} template<typename T>inline void output2(T t){for(auto i:t)output(i);} template<typename T>inline void debug(T t){bool f=0;for(auto i:t){cerr<<(f?" ":"")<<i;f=1;}cerr<<endl;} template<typename T>inline void debug2(T t){for(auto i:t)debug(i);} #define loop(n) for(long long _=0;_<(long long)(n);++_) #define _overload4(_1,_2,_3,_4,name,...) name #define __rep(i,a) repi(i,0,a,1) #define _rep(i,a,b) repi(i,a,b,1) #define repi(i,a,b,c) for(long long i=(long long)(a);i<(long long)(b);i+=c) #define rep(...) _overload4(__VA_ARGS__,repi,_rep,__rep)(__VA_ARGS__) #define _overload3_rev(_1,_2,_3,name,...) name #define _rep_rev(i,a) repi_rev(i,0,a) #define repi_rev(i,a,b) for(long long i=(long long)(b)-1;i>=(long long)(a);--i) #define rrep(...) _overload3_rev(__VA_ARGS__,repi_rev,_rep_rev)(__VA_ARGS__) // #define rep(i,...) for(auto i:range(__VA_ARGS__)) // #define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__))) // #define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i) // #define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i) // #define irep(i) for(lint i=0;;++i) // inline vector<long long> range(long long n){if(n<=0)return vector<long long>();vector<long long>v(n);iota(v.begin(),v.end(),0LL);return v;} // inline vector<long long> range(long long a,long long b){if(b<=a)return vector<long long>();vector<long long>v(b-a);iota(v.begin(),v.end(),a);return v;} // inline vector<long long> range(long long a,long long b,long long c){if((b-a+c-1)/c<=0)return vector<long long>();vector<long long>v((b-a+c-1)/c);for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;} // template<typename T>inline T reversed(T v){reverse(v.begin(),v.end());return v;} #define all(n) begin(n),end(n) template<typename T,typename E>bool chmin(T& s,const E& t){bool res=s>t;s=min<T>(s,t);return res;} template<typename T,typename E>bool chmax(T& s,const E& t){bool res=s<t;s=max<T>(s,t);return res;} const vector<lint> dx={1,0,-1,0,1,1,-1,-1}; const vector<lint> dy={0,1,0,-1,1,-1,1,-1}; #define SUM(v) accumulate(all(v),0LL) #if __cplusplus>=201703L template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));} #endif #define extrep(v,...) for(auto v:__MAKE_MAT__({__VA_ARGS__})) #define bit(n,a) ((n>>a)&1) vector<vector<long long>> __MAKE_MAT__(vector<long long> v){if(v.empty())return vector<vector<long long>>(1,vector<long long>());long long n=v.back();v.pop_back();vector<vector<long long>> ret;vector<vector<long long>> tmp=__MAKE_MAT__(v);for(auto e:tmp)for(long long i=0;i<n;++i){ret.push_back(e);ret.back().push_back(i);}return ret;} using graph=vector<vector<int>>; template<typename T>using graph_w=vector<vector<pair<int,T>>>; template<typename T,typename E>ostream& operator<<(ostream& out,pair<T,E>v){out<<"("<<v.first<<","<<v.second<<")";return out;} #if __cplusplus>=201703L constexpr inline long long powll(long long a,long long b){long long res=1;while(b--)res*=a;return res;} #endif template<typename T,typename E>pair<T,E>& operator+=(pair<T,E>&s,const pair<T,E>&t){s.first+=t.first;s.second+=t.second;return s;} template<typename T,typename E>pair<T,E>& operator-=(pair<T,E>&s,const pair<T,E>&t){s.first-=t.first;s.second-=t.second;return s;} template<typename T,typename E>pair<T,E> operator+(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res+=t;} template<typename T,typename E>pair<T,E> operator-(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res-=t;} #define BEGIN_STACK_EXTEND(size) void * stack_extend_memory_ = malloc(size);void * stack_extend_origin_memory_;char * stack_extend_dummy_memory_ = (char*)alloca((1+(int)(((long long)stack_extend_memory_)&127))*16);*stack_extend_dummy_memory_ = 0;asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp":"=b"(stack_extend_origin_memory_):"a"((char*)stack_extend_memory_+(size)-1024)); #define END_STACK_EXTEND asm volatile("mov %%rax, %%rsp"::"a"(stack_extend_origin_memory_));free(stack_extend_memory_); #line 2 "cpplib/math/is_prime.hpp" #include <initializer_list> /** * @brief 素数判定(高速) */ bool is_prime(long long n){ if(n<=1)return 0; if(n==2)return 1; if(n%2==0)return 0; long long s=0,d=n-1; while(d%2)d/=2,s++; auto mod_pow=[](__int128_t a,__int128_t b,__int128_t n){ long long res=1; while(b){ if(b%2)res=res*a%n; a=a*a%n; b/=2; } return (long long)(res); }; for(long long e:{2,3,5,7,11,13,17,19,23,29,31,37}){ if(n<=e)break; if(mod_pow(e,d,n)==1)continue; bool b=1; for(int i=0;i<s;i++){ if(mod_pow(e,d<<i,n)==n-1)b=0; } if(b)return 0; } return 1; } #line 8 "cpplib/math/prime_factor.hpp" /** * @brief 素因数分解(高速) */ void __prime_factor(long long n,long long& c,std::vector<long long>& v){ if(n==1)return; if(n%2==0){ v.emplace_back(2); __prime_factor(n/2,c,v); return; } if(is_prime(n)){ v.emplace_back(n); return; } while(1){ long long x=2,y=2,d=1; while(d==1){ x=((__int128_t)x*x+c)%n; y=((__int128_t)y*y%n+c)%n; y=((__int128_t)y*y%n+c)%n; d=std::gcd(std::abs(x-y),n); } if(d==n){ c++; continue; } __prime_factor(d,c,v); __prime_factor(n/d,c,v); return; } } std::map<long long,long long> prime_factor(long long n){ std::vector<long long>v; long long c=1; __prime_factor(n,c,v); std::map<long long,long long>m; for(auto e:v){ m[e]++; } return m; } #line 3 "cpplib/math/fact_list.hpp" vector<lint>factor_list(const std::map<int,int>& p){ vector<pair<lint,lint>>v; for(auto [s,t]:p)v.emplace_back(s,t); vector<lint>res; auto dfs=[&](auto dfs,lint idx,lint now)->void{ if(idx==(int)v.size()){ res.push_back(now); return; } for(int i=0;i<=v[idx].second;++i){ dfs(dfs,idx+1,now); now*=v[idx].first; } }; dfs(dfs,0,1); sort(res.begin(),res.end()); return res; } vector<lint>factor_list(std::map<long long,long long> p){ vector<pair<lint,lint>>v; for(auto [s,t]:p)v.emplace_back(s,t); vector<lint>res; auto dfs=[&](auto dfs,lint idx,lint now)->void{ if(idx==(int)v.size()){ res.push_back(now); return; } for(int i=0;i<=v[idx].second;++i){ dfs(dfs,idx+1,now); now*=v[idx].first; } }; dfs(dfs,0,1); sort(res.begin(),res.end()); return res; } vector<lint>factor_list(lint x){ auto p=prime_factor(x); vector<pair<lint,lint>>v; for(auto [s,t]:p)v.emplace_back(s,t); vector<lint>res; auto dfs=[&](auto dfs,lint idx,lint now)->void{ if(idx==(int)v.size()){ res.push_back(now); return; } for(int i=0;i<=v[idx].second;++i){ dfs(dfs,idx+1,now); now*=v[idx].first; } }; dfs(dfs,0,1); sort(res.begin(),res.end()); return res; } #line 2 "cpplib/math/ACL_modint1000000007.hpp" #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif #include <utility> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder using mint=atcoder::modint1000000007; #line 4 "cpplib/math/ACL_modint_base.hpp" std::ostream& operator<<(std::ostream& lhs, const mint& rhs) noexcept { lhs << rhs.val(); return lhs; } std::istream& operator>>(std::istream& lhs,mint& rhs) noexcept { long long x; lhs >> x; rhs=x; return lhs; } static int MOD_NOW=-1; static int sz=0; static std::vector<mint>fact_table,fact_inv_table; void update(int x){ if(MOD_NOW!=mint::mod()||sz==0){ fact_table.assign(1,1); fact_inv_table.assign(1,1); sz=1; } while(sz<=x){ fact_table.resize(sz*2); fact_inv_table.resize(sz*2); for(int i=sz;i<sz*2;++i){ fact_table[i]=fact_table[i-1]*i; } fact_inv_table[sz*2-1]=fact_table[sz*2-1].inv(); for(int i=sz*2-2;i>=sz;--i){ fact_inv_table[i]=fact_inv_table[i+1]*(i+1); } sz*=2; } } inline mint fact(int x){ assert(x>=0); update(x); return fact_table[x]; } inline mint fact_inv(int x){ assert(x>=0); update(x); return fact_inv_table[x]; } inline mint comb(int x,int y){ if(x<0||x<y||y<0)return 0; return fact(x)*fact_inv(y)*fact_inv(x-y); } inline mint perm(int x,int y){ return fact(x)*fact_inv(y); } inline mint multi_comb(int x,int y){ return comb(x+y-1,y); } #line 5 "main.cpp" int main(){ lint n,k; cin>>n>>k; auto p=prime_factor(n); mint ans=1,tmp=1; for(auto [s,t]:p){ mint cnt=0; rep(i,t+1){ cnt+=comb(k-1+i,i); } ans*=cnt; tmp*=t+1; } cout<<ans<<endl; }