結果
| 問題 |
No.1659 Product of Divisors
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-08-27 22:34:48 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 1 ms / 2,000 ms |
| コード長 | 9,128 bytes |
| コンパイル時間 | 13,417 ms |
| コンパイル使用メモリ | 402,076 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-11-21 03:37:23 |
| 合計ジャッジ時間 | 14,306 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 23 |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 1_000_000_007;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
// https://judge.yosupo.jp/submission/5155
mod pollard_rho {
/// binary gcd
pub fn gcd(mut x: i64, mut y: i64) -> i64 {
if y == 0 { return x; }
if x == 0 { return y; }
let k = (x | y).trailing_zeros();
y >>= k;
x >>= x.trailing_zeros();
while y != 0 {
y >>= y.trailing_zeros();
if x > y { let t = x; x = y; y = t; }
y -= x;
}
x << k
}
fn add_mod(x: i64, y: i64, n: i64) -> i64 {
let z = x + y;
if z >= n { z - n } else { z }
}
fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 {
assert!(x >= 0);
assert!(x < n);
let mut sum = 0;
let mut cur = x;
while y > 0 {
if (y & 1) == 1 { sum = add_mod(sum, cur, n); }
cur = add_mod(cur, cur, n);
y >>= 1;
}
sum
}
fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 {
let mut prod = if n == 1 { 0 } else { 1 };
let mut cur = x % n;
while e > 0 {
if (e & 1) == 1 { prod = mul_mod(prod, cur, n); }
e >>= 1;
if e > 0 { cur = mul_mod(cur, cur, n); }
}
prod
}
pub fn is_prime(n: i64) -> bool {
if n <= 1 { return false; }
let small = [2, 3, 5, 7, 11, 13];
if small.iter().any(|&u| u == n) { return true; }
if small.iter().any(|&u| n % u == 0) { return false; }
let mut d = n - 1;
let e = d.trailing_zeros();
d >>= e;
// https://miller-rabin.appspot.com/
let a = [2, 325, 9375, 28178, 450775, 9780504, 1795265022];
a.iter().all(|&a| {
if a % n == 0 { return true; }
let mut x = mod_pow(a, d, n);
if x == 1 { return true; }
for _ in 0..e {
if x == n - 1 {
return true;
}
x = mul_mod(x, x, n);
if x == 1 { return false; }
}
x == 1
})
}
fn pollard_rho(n: i64, c: &mut i64) -> i64 {
// An improvement with Brent's cycle detection algorithm is performed.
// https://maths-people.anu.edu.au/~brent/pub/pub051.html
if n % 2 == 0 { return 2; }
loop {
let mut x: i64; // tortoise
let mut y = 2; // hare
let mut d = 1;
let cc = *c;
let f = |i| add_mod(mul_mod(i, i, n), cc, n);
let mut r = 1;
// We don't perform the gcd-once-in-a-while optimization
// because the plain gcd-every-time algorithm appears to
// outperform, at least on judge.yosupo.jp :)
while d == 1 {
x = y;
for _ in 0..r {
y = f(y);
d = gcd((x - y).abs(), n);
if d != 1 { break; }
}
r *= 2;
}
if d == n {
*c += 1;
continue;
}
return d;
}
}
/// Outputs (p, e) in p's ascending order.
pub fn factorize(x: i64) -> Vec<(i64, usize)> {
if x <= 1 { return vec![]; }
let mut hm = std::collections::HashMap::new();
let mut pool = vec![x];
let mut c = 1;
while let Some(u) = pool.pop() {
if is_prime(u) {
*hm.entry(u).or_insert(0) += 1;
continue;
}
let p = pollard_rho(u, &mut c);
pool.push(p);
pool.push(u / p);
}
let mut v: Vec<_> = hm.into_iter().collect();
v.sort();
v
}
} // mod pollard_rho
fn main() {
input!(n: i64, k: i64);
let pe = pollard_rho::factorize(n);
let mut ans = MInt::new(1);
for (_, e) in pe {
let mut cur = MInt::new(k + e as i64);
for i in 0..e {
ans *= cur;
ans *= MInt::new(i as i64 + 1).inv();
cur -= 1;
}
}
println!("{}", ans);
}