結果
| 問題 | No.1659 Product of Divisors |
| コンテスト | |
| ユーザー |
convexineq
|
| 提出日時 | 2021-08-28 21:03:30 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 47 ms / 2,000 ms |
| コード長 | 729 bytes |
| コンパイル時間 | 266 ms |
| コンパイル使用メモリ | 82,304 KB |
| 実行使用メモリ | 57,856 KB |
| 最終ジャッジ日時 | 2024-11-21 21:20:26 |
| 合計ジャッジ時間 | 2,124 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 23 |
ソースコード
def prime_factorize(N): #素因数分解
exponent = 0
while N%2 == 0:
exponent += 1
N //= 2
if exponent: factorization = [[2,exponent]]
else: factorization = []
i=1
while i*i <=N:
i += 2
if N%i: continue
exponent = 0
while N%i == 0:
exponent += 1
N //= i
factorization.append([i,exponent])
if N!= 1: factorization.append([N,1])
assert N != 0, "zero"
return factorization
n,k = map(int,input().split())
primes = prime_factorize(n)
ans = 1
MOD = 10**9+7
for _,e in primes:
r = s = 1
for i in range(1,e+1):
r = r*(k+i)%MOD
s = s*i%MOD
r *= pow(s,MOD-2,MOD)
ans = ans*r%MOD
print(ans)
convexineq