結果
問題 | No.1665 quotient replace |
ユーザー |
|
提出日時 | 2021-09-03 22:55:45 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 384 ms / 3,000 ms |
コード長 | 3,470 bytes |
コンパイル時間 | 2,475 ms |
コンパイル使用メモリ | 199,344 KB |
最終ジャッジ日時 | 2025-01-24 06:44:01 |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 41 |
ソースコード
#line 1 "main.cpp"#include <bits/stdc++.h>#line 2 "/home/ubuntu/Library/utils/macros.hpp"#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))#define ALL(x) std::begin(x), std::end(x)#line 7 "/home/ubuntu/Library/number/primes.hpp"struct prepared_primes {int size;std::vector<int> sieve;std::vector<int> primes;/*** @note O(size)*/prepared_primes(int size_): size(size_) {sieve.resize(size);REP3 (p, 2, size) if (sieve[p] == 0) {primes.push_back(p);for (int k = p; k < size; k += p) {if (sieve[k] == 0) {sieve[k] = p;}}}}/*** @note let k be the length of the result, O(k) if n < size; O(\sqrt{n} + k) if size <= n < size^2*/std::vector<int64_t> list_prime_factors(int64_t n) const {assert (1 <= n and n < (int64_t)size * size);std::vector<int64_t> result;// trial division for large partfor (int p : primes) {if (n < size or n < (int64_t)p * p) {break;}while (n % p == 0) {n /= p;result.push_back(p);}}// small partif (n == 1) {// nop} else if (n < size) {while (n != 1) {result.push_back(sieve[n]);n /= sieve[n];}} else {result.push_back(n);}assert (std::is_sorted(ALL(result)));return result;}std::vector<int64_t> list_all_factors(int64_t n) const {auto p = list_prime_factors(n);std::vector<int64_t> d;d.push_back(1);for (int l = 0; l < p.size(); ) {int r = l + 1;while (r < p.size() and p[r] == p[l]) ++ r;int n = d.size();REP (k1, r - l) {REP (k2, n) {d.push_back(d[d.size() - n] * p[l]);}}l = r;}return d;}/*** @note O(1) if n < size; O(sqrt n) if size <= n < size^2*/bool is_prime(int64_t n) const {assert (1 <= n and n < (int64_t)size * size);if (n < size) {return sieve[n] == n;}for (int p : primes) {if (n < (int64_t)p * p) {break;}if (n % p == 0) {return false;}}return true;}};#line 4 "main.cpp"using namespace std;bool solve(int n, const std::vector<int> &a) {prepared_primes primes(1e6);vector<int> g;for (int a_i : a) {g.push_back(primes.list_prime_factors(a_i).size());}int sum_g = 0;for (int g_i : g) {sum_g ^= g_i;}return sum_g;}// generated by oj-template v4.8.0 (https://github.com/online-judge-tools/template-generator)int main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);int N;std::cin >> N;std::vector<int> A(N);REP (i, N) { std::cin >> A[i]; }auto ans = solve(N, A);std::cout << (ans ? "white" : "black") << '\n';return 0;}