結果
| 問題 |
No.1664 Unstable f(n)
|
| コンテスト | |
| ユーザー |
keijak
|
| 提出日時 | 2021-09-04 05:14:11 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 4,453 bytes |
| コンパイル時間 | 4,245 ms |
| コンパイル使用メモリ | 381,228 KB |
| 最終ジャッジ日時 | 2025-01-24 07:40:37 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 38 |
ソースコード
#include <bits/stdc++.h>
#define REP_(i, a_, b_, a, b, ...) \
for (int i = (a), END_##i = (b); i < END_##i; ++i)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(x) std::begin(x), std::end(x)
using i64 = long long;
template<typename T, typename U>
inline bool chmax(T &a, U b) {
return a < b and ((a = std::move(b)), true);
}
template<typename T, typename U>
inline bool chmin(T &a, U b) {
return a > b and ((a = std::move(b)), true);
}
template<typename T>
inline int ssize(const T &a) {
return (int) std::size(a);
}
template<typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &a) {
for (auto &x: a) is >> x;
return is;
}
template<typename T, typename U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) {
return os << "(" << a.first << ", " << a.second << ")";
}
template<typename Container>
std::ostream &print_seq(const Container &a, std::string_view sep = " ",
std::string_view ends = "\n",
std::ostream &os = std::cout) {
auto b = std::begin(a), e = std::end(a);
for (auto it = std::begin(a); it != e; ++it) {
if (it != b) os << sep;
os << *it;
}
return os << ends;
}
template<typename T, typename = void>
struct is_iterable : std::false_type {};
template<typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
decltype(std::end(std::declval<T>()))>>
: std::true_type {
};
template<typename T, typename = std::enable_if_t<
is_iterable<T>::value &&
!std::is_same<T, std::string_view>::value &&
!std::is_same<T, std::string>::value>>
std::ostream &operator<<(std::ostream &os, const T &a) {
return print_seq(a, ", ", "", (os << "{")) << "}";
}
void print() { std::cout << "\n"; }
template<class T>
void print(const T &x) {
std::cout << x << "\n";
}
template<typename Head, typename... Tail>
void print(const Head &head, Tail... tail) {
std::cout << head << " ";
print(tail...);
}
struct Input {
template<typename T>
operator T() const {
T x;
std::cin >> x;
return x;
}
} in;
#ifdef MY_DEBUG
#include "debug_dump.hpp"
#else
#define DUMP(...)
#endif
using namespace std;
template<int sign = 1>
struct Infinity {
template<typename T>
constexpr operator T() const {
static_assert(sign == 1 or not std::is_unsigned_v<T>,
"must be positive in an unsigned type");
if constexpr (std::numeric_limits<T>::has_infinity) {
return T(sign) * std::numeric_limits<T>::infinity();
} else {
return T(sign) * (std::numeric_limits<T>::max() / T(2));
}
}
constexpr Infinity<sign * -1> operator-() const { return {}; }
template<typename T>
friend constexpr bool operator==(const T &x, const Infinity &y) {
return x == T(y);
}
template<typename T>
friend constexpr bool operator!=(const T &x, const Infinity &y) {
return x != T(y);
}
};
constexpr Infinity<> kBig;
#include <boost/multiprecision/cpp_int.hpp>
using i128 = boost::multiprecision::checked_int128_t;
namespace multip = boost::multiprecision;
template<class F>
i64 bisect(i64 true_x, i64 false_x, F pred) {
static_assert(std::is_invocable_r_v<bool, F, i64>, "F must be: i64 -> bool");
assert(std::max<i64>(true_x, false_x) <= std::numeric_limits<i64>::max() / 2);
// To allow negative values, use floor_div() in the loop.
assert(true_x >= -1 and false_x >= -1);
using u64 = unsigned long long;
while (std::abs(true_x - false_x) > 1) {
i64 mid = ((u64) true_x + (u64) false_x) / 2;
if (pred(mid)) {
true_x = std::move(mid);
} else {
false_x = std::move(mid);
}
}
return true_x;
}
template<typename T>
T power(T b, i64 e) {
assert(e >= 0);
T x = 1;
while (e > 0) {
if (e & 1) x *= b;
b *= b;
e >>= 1;
}
return x;
}
auto solve() {
const i64 n = in;
i64 ans = n;
for (i64 j = 2; (1LL << j) <= n; ++j) {
auto im = bisect(1, n, [&](i64 x) -> bool {
i128 y = 1;
REP(p, j) {
y *= x;
if (y > n) return false;
}
return y <= n;
});
i128 ij = power<i128>(im, j);
i64 k = n - i64(ij);
chmin(ans, im + j + k);
}
return ans;
}
auto main() -> int {
ios_base::sync_with_stdio(false), cin.tie(nullptr);
cout << std::fixed << std::setprecision(18);
const int t = 1;
REP(test_case, t) {
auto ans = solve();
print(ans);
}
}
keijak