結果

問題 No.1094 木登り / Climbing tree
ユーザー stoqstoq
提出日時 2021-09-04 18:02:16
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 600 ms / 2,000 ms
コード長 7,373 bytes
コンパイル時間 5,297 ms
コンパイル使用メモリ 279,272 KB
実行使用メモリ 60,544 KB
最終ジャッジ日時 2024-11-08 07:22:23
合計ジャッジ時間 20,631 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 17 ms
9,088 KB
testcase_01 AC 504 ms
51,456 KB
testcase_02 AC 187 ms
60,544 KB
testcase_03 AC 72 ms
11,264 KB
testcase_04 AC 133 ms
27,520 KB
testcase_05 AC 253 ms
45,952 KB
testcase_06 AC 198 ms
22,400 KB
testcase_07 AC 533 ms
51,584 KB
testcase_08 AC 512 ms
51,584 KB
testcase_09 AC 504 ms
51,584 KB
testcase_10 AC 517 ms
51,584 KB
testcase_11 AC 546 ms
51,584 KB
testcase_12 AC 600 ms
51,584 KB
testcase_13 AC 501 ms
51,584 KB
testcase_14 AC 515 ms
51,712 KB
testcase_15 AC 248 ms
20,352 KB
testcase_16 AC 568 ms
48,256 KB
testcase_17 AC 422 ms
32,384 KB
testcase_18 AC 361 ms
26,496 KB
testcase_19 AC 558 ms
41,856 KB
testcase_20 AC 563 ms
51,456 KB
testcase_21 AC 459 ms
34,048 KB
testcase_22 AC 511 ms
51,584 KB
testcase_23 AC 511 ms
51,584 KB
testcase_24 AC 535 ms
51,584 KB
testcase_25 AC 545 ms
51,584 KB
testcase_26 AC 502 ms
51,584 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define MOD_TYPE 1

#pragma region Macros

#include <bits/stdc++.h>
using namespace std;

#include <atcoder/all>
using namespace atcoder;

#if 0
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif

#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif

using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;

#if MOD_TYPE == 1
constexpr ll MOD = ll(1e9 + 7);
#else
#if MOD_TYPE == 2
constexpr ll MOD = 998244353;
#else
constexpr ll MOD = 1000003;
#endif
#endif

using mint = static_modint<MOD>;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-11;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};

#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
#define UNIQUE(v) v.erase(unique(all(v)), v.end())

struct io_init {
  io_init() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << setprecision(30) << setiosflags(ios::fixed);
  };
} io_init;
template <typename T>
inline bool chmin(T &a, T b) {
  if (a > b) {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
inline bool chmax(T &a, T b) {
  if (a < b) {
    a = b;
    return true;
  }
  return false;
}
inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; }
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val) {
  fill((T *)array, (T *)(array + N), val);
}
template <typename T>
vector<T> compress(vector<T> &v) {
  vector<T> val = v;
  sort(all(val)), val.erase(unique(all(val)), val.end());
  for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin();
  return val;
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept {
  is >> p.first >> p.second;
  return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept {
  os << p.first << " " << p.second;
  return os;
}
ostream &operator<<(ostream &os, mint m) {
  os << m.val();
  return os;
}

random_device seed_gen;
mt19937_64 engine(seed_gen());

struct BiCoef {
  vector<mint> fact_, inv_, finv_;
  BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
    fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
    for (int i = 2; i < n; i++) {
      fact_[i] = fact_[i - 1] * i;
      inv_[i] = -inv_[MOD % i] * (MOD / i);
      finv_[i] = finv_[i - 1] * inv_[i];
    }
  }
  mint C(ll n, ll k) const noexcept {
    if (n < k || n < 0 || k < 0) return 0;
    return fact_[n] * finv_[k] * finv_[n - k];
  }
  mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; }
  mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); }
  mint Ch1(ll n, ll k) const noexcept {
    if (n < 0 || k < 0) return 0;
    mint res = 0;
    for (int i = 0; i < n; i++)
      res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1);
    return res;
  }
  mint fact(ll n) const noexcept {
    if (n < 0) return 0;
    return fact_[n];
  }
  mint inv(ll n) const noexcept {
    if (n < 0) return 0;
    return inv_[n];
  }
  mint finv(ll n) const noexcept {
    if (n < 0) return 0;
    return finv_[n];
  }
};

BiCoef bc(500010);

#pragma endregion

template <typename T>
struct Tree {
  int V;
  using P = pair<int, T>;
  vector<vector<P>> E;
  vector<int> par, depth, in, out;
  vector<T> dist;
  vector<vector<int>> par_double;

  Tree() {}
  Tree(int V) : V(V) {
    E.resize(V);
    depth.resize(V);
    dist.resize(V);
    in.resize(V);
    out.resize(V);
  }

  void read(int index = 1, bool ini = true) {
    int a, b;
    for (int i = 0; i < V - 1; i++) {
      cin >> a >> b, a -= index, b -= index;
      E[a].push_back({b, 1});
      E[b].push_back({a, 1});
    }
    if (ini) init();
  }

  void add_edge(int a, int b, T w = 1) {
    E[a].push_back({b, w});
    E[b].push_back({a, w});
  }

  void dfs(int v, int d, T w, int &i) {
    in[v] = i++;
    depth[v] = d;
    dist[v] = w;
    for (auto [c, di] : E[v]) {
      if (par[v] == c) continue;
      par[c] = v;
      dfs(c, d + 1, w + di, i);
    }
    out[v] = i;
  }

  inline int sub(int v) { return out[v] - in[v]; }

  void init(int root = 0) {
    calculated = false;
    par.assign(V, -1);
    int i = 0;
    dfs(root, 0, 0, i);
  }

  bool calculated;
  void calc_double() {
    par_double.assign(V, vector<int>(25));
    for (int i = 0; i < V; i++) par_double[i][0] = par[i];

    for (int k = 0; k < 24; k++) {
      for (int i = 0; i < V; i++) {
        if (par_double[i][k] == -1)
          par_double[i][k + 1] = -1;
        else
          par_double[i][k + 1] = par_double[par_double[i][k]][k];
      }
    }
  }

  int getLCA(int a, int b) {
    if (!calculated) calc_double(), calculated = true;

    if (a == b) return a;
    if (depth[a] < depth[b]) swap(a, b);
    for (int k = 24; k >= 0; k--) {
      if (par_double[a][k] != -1 && depth[par_double[a][k]] >= depth[b])
        a = par_double[a][k];
    }
    if (a == b) return a;
    for (int k = 24; k >= 0; k--) {
      if (par_double[a][k] != -1 && par_double[a][k] != par_double[b][k]) {
        a = par_double[a][k];
        b = par_double[b][k];
      }
    }
    return par_double[a][0];
  }

  int length(int a, int b) {
    return depth[a] + depth[b] - 2 * depth[getLCA(a, b)];
  }

  T distance(int a, int b) {
    return dist[a] + dist[b] - 2 * dist[getLCA(a, b)];
  }

  T diameter(int &a, int &b) {
    T Max(-1), d;
    for (int i = 0; i < V; i++) {
      d = distance(0, i);
      if (Max < d) Max = d, a = i;
    }
    Max = -1;
    for (int i = 0; i < V; i++) {
      d = distance(a, i);
      if (Max < d) Max = d, b = i;
    }
    return Max;
  }

  T diameter() {
    int a, b;
    return diameter(a, b);
  }

  int unweighted_diameter(int &a, int &b) {
    int Max = -1, d;
    for (int i = 0; i < V; i++) {
      d = length(0, i);
      if (Max < d) Max = d, a = i;
    }
    Max = -1;
    for (int i = 0; i < V; i++) {
      d = length(a, i);
      if (Max < d) Max = d, b = i;
    }
    return Max;
  }

  int unweighted_diameter() {
    int a, b;
    return unweighted_diameter(a, b);
  }
};

void solve() {
  int n;
  cin >> n;
  Tree<int> tr(n);
  rep(i, n - 1) {
    int a, b, c;
    cin >> a >> b >> c;
    a--, b--;
    tr.add_edge(a, b, c);
  }
  tr.init();
  int q;
  cin >> q;
  rep(i, q) {
    int s, t;
    cin >> s >> t;
    s--, t--;
    cout << tr.distance(s, t) << "\n";
  }
}

int main() { solve(); }
0