結果
| 問題 |
No.1675 Strange Minimum Query
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-09-10 21:51:22 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 284 ms / 2,000 ms |
| コード長 | 7,364 bytes |
| コンパイル時間 | 12,477 ms |
| コンパイル使用メモリ | 381,740 KB |
| 実行使用メモリ | 18,040 KB |
| 最終ジャッジ日時 | 2024-06-11 23:31:42 |
| 合計ジャッジ時間 | 21,827 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 34 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
// Verified by: https://atcoder.jp/contests/joisc2021/submissions/25693167
pub trait Action {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn update(x: Self::T, a: Self::U) -> Self::T;
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn upe() -> Self::U; // identity for upop
}
pub struct DualSegTree<R: Action> {
n: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: Action> DualSegTree<R> {
pub fn new(a: &[R::T]) -> Self {
let n_ = a.len();
let mut n = 1;
while n < n_ { n *= 2; } // n is a power of 2
DualSegTree {
n: n,
dat: a.to_vec(),
lazy: vec![R::upe(); 2 * n - 1]
}
}
#[inline]
fn lazy_evaluate_node(&mut self, k: usize) {
if self.lazy[k] == R::upe() { return; }
if k >= self.n - 1 {
let idx = k + 1 - self.n;
self.dat[idx] = R::update(self.dat[idx], self.lazy[k]);
}
if k < self.n - 1 {
self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);
self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);
}
self.lazy[k] = R::upe(); // identity for upop
}
fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, l: usize, r: usize) {
self.lazy_evaluate_node(k);
// [a,b) and [l,r) intersects?
if r <= a || b <= l {return;}
if a <= l && r <= b {
self.lazy[k] = R::upop(self.lazy[k], v);
self.lazy_evaluate_node(k);
return;
}
self.update_sub(a, b, v, 2 * k + 1, l, (l + r) / 2);
self.update_sub(a, b, v, 2 * k + 2, (l + r) / 2, r);
}
/* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */
#[inline]
pub fn update(&mut self, a: usize, b: usize, v: R::U) {
let n = self.n;
self.update_sub(a, b, v, 0, 0, n);
}
/* l,r are for simplicity */
fn update_at_sub(&mut self, a: usize, k: usize, l: usize, r: usize) {
self.lazy_evaluate_node(k);
// [a,a+1) and [l,r) intersect?
if r <= a || a + 1 <= l { return; }
if a <= l && r <= a + 1 { return; }
self.update_at_sub(a, 2 * k + 1, l, (l + r) / 2);
self.update_at_sub(a, 2 * k + 2, (l + r) / 2, r);
}
/* [a, b) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, a: usize) -> R::T {
let n = self.n;
self.update_at_sub(a, 0, 0, n);
self.dat[a]
}
}
enum Chmax {}
impl Action for Chmax {
type T = i64; // data
type U = i64; // action, a |-> x |-> max(x, a)
fn update(x: Self::T, a: Self::U) -> Self::T {
max(x, a)
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
std::cmp::max(fst, snd)
}
fn upe() -> Self::U { // identity for upop
-1 << 50
}
}
/**
* Segment Tree. This data structure is useful for fast folding on intervals of an array
* whose elements are elements of monoid I. Note that constructing this tree requires the identity
* element of I and the operation of I.
* Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581)
* AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001)
*/
struct SegTree<I, BiOp> {
n: usize,
dat: Vec<I>,
op: BiOp,
e: I,
}
impl<I, BiOp> SegTree<I, BiOp>
where BiOp: Fn(I, I) -> I,
I: Copy {
pub fn new(n_: usize, op: BiOp, e: I) -> Self {
let mut n = 1;
while n < n_ { n *= 2; } // n is a power of 2
SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e}
}
/* ary[k] <- v */
pub fn update(&mut self, idx: usize, v: I) {
let mut k = idx + self.n - 1;
self.dat[k] = v;
while k > 0 {
k = (k - 1) / 2;
self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
}
/* [a, b) (note: half-inclusive)
* http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */
pub fn query(&self, mut a: usize, mut b: usize) -> I {
let mut left = self.e;
let mut right = self.e;
a += self.n - 1;
b += self.n - 1;
while a < b {
if (a & 1) == 0 {
left = (self.op)(left, self.dat[a]);
}
if (b & 1) == 0 {
right = (self.op)(self.dat[b - 1], right);
}
a = a / 2;
b = (b - 1) / 2;
}
(self.op)(left, right)
}
}
trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); }
impl<T: PartialOrd> Change for T {
fn chmax(&mut self, x: T) { if *self < x { *self = x; } }
fn chmin(&mut self, x: T) { if *self > x { *self = x; } }
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
fn solve() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}
#[allow(unused)]
macro_rules! putvec {
($v:expr) => {
for i in 0..$v.len() {
puts!("{}{}", $v[i], if i + 1 == $v.len() {"\n"} else {" "});
}
}
}
input! {
n: usize, q: usize,
lrb: [(usize1, usize, i64); q],
}
let mut dst = DualSegTree::<Chmax>::new(&vec![1; n]);
for &(l, r, b) in &lrb {
dst.update(l, r, b);
}
let mut st = SegTree::new(n, min, 1 << 60);
let mut v = vec![0; n];
for i in 0..n {
let a = dst.query(i);
v[i] = a;
st.update(i, dst.query(i));
}
for &(l, r, b) in &lrb {
if st.query(l, r) != b {
puts!("-1\n");
return;
}
}
putvec!(v);
}