結果
| 問題 |
No.1678 Coin Trade (Multiple)
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2021-09-10 21:53:28 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 903 ms / 5,000 ms |
| コード長 | 5,883 bytes |
| コンパイル時間 | 2,461 ms |
| コンパイル使用メモリ | 208,344 KB |
| 最終ジャッジ日時 | 2025-01-24 10:19:07 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 56 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <typename T, typename U>
struct MinimumCostSTFlow {
struct Edge {
int dst, rev;
T cap;
U cost;
Edge(int dst, T cap, U cost, int rev) : dst(dst), cap(cap), cost(cost), rev(rev) {}
};
const U uinf;
std::vector<std::vector<Edge>> graph;
MinimumCostSTFlow(int n, const U uinf = std::numeric_limits<U>::max())
: n(n), uinf(uinf), graph(n), prev_v(n, -1), prev_e(n, -1), dist(n), potential(n, 0) {}
void add_edge(int src, int dst, T cap, U cost) {
has_negative_edge |= cost < 0;
graph[src].emplace_back(dst, cap, cost, graph[dst].size());
graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1);
}
U solve(int s, int t, T flow) {
U res = 0;
while (flow > 0) {
if (has_negative_edge) {
bellman_ford(s);
has_negative_edge = false;
} else {
dijkstra(s);
}
if (dist[t] == uinf) return uinf;
res += calc(s, t, flow);
}
return res;
}
U solve(int s, int t) {
U res = 0;
T f = tinf;
bool init = false;
while (true) {
if (init) {
dijkstra(s);
} else {
bellman_ford(s);
init = true;
}
if (potential[t] >= 0 || dist[t] == uinf) return res;
res += calc(s, t, f);
}
}
std::pair<T, U> minimum_cost_maximum_flow(int s, int t, T flow) {
T f = flow;
U cost = 0;
while (flow > 0) {
if (has_negative_edge) {
bellman_ford(s);
has_negative_edge = false;
} else {
dijkstra(s);
}
if (dist[t] == uinf) return {f - flow, cost};
cost += calc(s, t, flow);
}
return {f, cost};
}
U abc214_h(int s, int t, T flow, const vector<int> &topol) {
U res = 0;
while (flow > 0) {
if (has_negative_edge) {
std::fill(dist.begin(), dist.end(), uinf);
dist[s] = 0;
for (int i : topol) {
if (dist[i] == uinf) continue;
for (int j = 0; j < graph[i].size(); ++j) {
const Edge &e = graph[i][j];
if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) {
dist[e.dst] = dist[i] + e.cost;
prev_v[e.dst] = i;
prev_e[e.dst] = j;
}
}
}
for (int i = 0; i < n; ++i) {
if (dist[i] != uinf) potential[i] += dist[i];
}
has_negative_edge = false;
} else {
dijkstra(s);
}
if (dist[t] == uinf) return uinf;
res += calc(s, t, flow);
}
return res;
}
private:
const T tinf = std::numeric_limits<T>::max();
int n;
bool has_negative_edge = false;
std::vector<int> prev_v, prev_e;
std::vector<U> dist, potential;
std::priority_queue<std::pair<U, int>, std::vector<std::pair<U, int>>, std::greater<std::pair<U, int>>> que;
void bellman_ford(int s) {
std::fill(dist.begin(), dist.end(), uinf);
dist[s] = 0;
bool is_updated = true;
for (int step = 0; step < n; ++step) {
is_updated = false;
for (int i = 0; i < n; ++i) {
if (dist[i] == uinf) continue;
for (int j = 0; j < graph[i].size(); ++j) {
const Edge &e = graph[i][j];
if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) {
dist[e.dst] = dist[i] + e.cost;
prev_v[e.dst] = i;
prev_e[e.dst] = j;
is_updated = true;
}
}
}
if (!is_updated) break;
}
assert(!is_updated);
for (int i = 0; i < n; ++i) {
if (dist[i] != uinf) potential[i] += dist[i];
}
}
void dijkstra(int s) {
std::fill(dist.begin(), dist.end(), uinf);
dist[s] = 0;
que.emplace(0, s);
while (!que.empty()) {
std::pair<U, int> pr = que.top(); que.pop();
int ver = pr.second;
if (dist[ver] < pr.first) continue;
for (int i = 0; i < graph[ver].size(); ++i) {
const Edge &e = graph[ver][i];
U nx = dist[ver] + e.cost + potential[ver] - potential[e.dst];
if (e.cap > 0 && dist[e.dst] > nx) {
dist[e.dst] = nx;
prev_v[e.dst] = ver;
prev_e[e.dst] = i;
que.emplace(dist[e.dst], e.dst);
}
}
}
for (int i = 0; i < n; ++i) {
if (dist[i] != uinf) potential[i] += dist[i];
}
}
U calc(int s, int t, T &flow) {
T f = flow;
for (int v = t; v != s; v = prev_v[v]) f = std::min(f, graph[prev_v[v]][prev_e[v]].cap);
flow -= f;
for (int v = t; v != s; v = prev_v[v]) {
Edge &e = graph[prev_v[v]][prev_e[v]];
e.cap -= f;
graph[v][e.rev].cap += f;
}
return potential[t] * f;
}
};
int main() {
int n, k; cin >> n >> k;
vector<int> a(n);
MinimumCostSTFlow<int, ll> flow(n);
FOR(i, 1, n) flow.add_edge(i - 1, i, k, 0);
REP(i, n) {
int m; cin >> a[i] >> m;
while (m--) {
int b; cin >> b; --b;
flow.add_edge(b, i, 1, a[b] - a[i]);
}
}
vector<int> order(n);
iota(ALL(order), 0);
cout << -flow.abc214_h(0, n - 1, k, order) << '\n';
return 0;
}
emthrm