結果
| 問題 |
No.1678 Coin Trade (Multiple)
|
| コンテスト | |
| ユーザー |
keijak
|
| 提出日時 | 2021-09-13 22:05:32 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,315 ms / 5,000 ms |
| コード長 | 6,257 bytes |
| コンパイル時間 | 3,495 ms |
| コンパイル使用メモリ | 275,608 KB |
| 最終ジャッジ日時 | 2025-01-24 13:45:15 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 56 |
ソースコード
#include <bits/stdc++.h>
#include <atcoder/mincostflow>
#include <boost/heap/fibonacci_heap.hpp>
#define REP_(i, a_, b_, a, b, ...) \
for (int i = (a), END_##i = (b); i < END_##i; ++i)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(x) std::begin(x), std::end(x)
using i64 = long long;
template<typename T, typename U>
inline bool chmax(T &a, U b) {
return a < b and ((a = std::move(b)), true);
}
template<typename T, typename U>
inline bool chmin(T &a, U b) {
return a > b and ((a = std::move(b)), true);
}
template<typename T>
inline int ssize(const T &a) {
return (int) std::size(a);
}
template<typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &a) {
for (auto &x: a) is >> x;
return is;
}
template<typename T, typename U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) {
return os << "(" << a.first << ", " << a.second << ")";
}
template<typename Container>
std::ostream &print_seq(const Container &a, std::string_view sep = " ",
std::string_view ends = "\n",
std::ostream &os = std::cout) {
auto b = std::begin(a), e = std::end(a);
for (auto it = std::begin(a); it != e; ++it) {
if (it != b) os << sep;
os << *it;
}
return os << ends;
}
template<typename T, typename = void>
struct is_iterable : std::false_type {};
template<typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
decltype(std::end(std::declval<T>()))>>
: std::true_type {
};
template<typename T, typename = std::enable_if_t<
is_iterable<T>::value &&
!std::is_same<T, std::string_view>::value &&
!std::is_same<T, std::string>::value>>
std::ostream &operator<<(std::ostream &os, const T &a) {
return print_seq(a, ", ", "", (os << "{")) << "}";
}
void print() { std::cout << "\n"; }
template<class T>
void print(const T &x) {
std::cout << x << "\n";
}
template<typename Head, typename... Tail>
void print(const Head &head, Tail... tail) {
std::cout << head << " ";
print(tail...);
}
struct Input {
template<typename T>
operator T() const {
T x;
std::cin >> x;
return x;
}
} in;
#ifdef MY_DEBUG
#include "debug_dump.hpp"
#else
#define DUMP(...)
#endif
using namespace std;
template<typename Cap, typename Cost>
class MinCostFlowDAG {
public:
static constexpr Cost INF = std::numeric_limits<Cost>::max() / 4;
struct Edge {
int to, rev;
Cap cap;
Cost cost;
};
const int V;
std::vector<vector<Edge>> G;
std::vector<Cost> h, dist;
std::vector<int> deg, ord, prevv, preve;
explicit MinCostFlowDAG(int node_count)
: V(node_count),
G(V),
h(V, INF),
dist(V, 0),
deg(V, 0),
prevv(V),
preve(V) {}
void add_edge(const int from, const int to, const Cap cap, const Cost cost) {
if (cap == 0) return;
G[from].push_back(Edge{to, (int) G[to].size(), cap, cost});
G[to].push_back(Edge{from, (int) G[from].size() - 1, 0, -cost});
++deg[to];
}
std::optional<Cost> flow(const int s, const int t, Cap f) {
assert(topological_sort()); // must be a DAG.
calc_potential(s);
Cost res = 0;
while (f > 0) {
dijkstra(s);
if (dist[t] == INF) return std::nullopt;
update(s, t, f, res);
}
return res;
}
private:
// using DijkstraState = pair<Cost, int>;
struct DijkstraState {
Cost dist;
int node;
};
friend bool operator>(const DijkstraState &x, const DijkstraState &y) {
return x.dist > y.dist;
}
friend bool operator<(const DijkstraState &x, const DijkstraState &y) {
return x.dist < y.dist;
}
bool topological_sort() {
queue<int> que;
for (int i = 0; i < V; ++i) {
if (deg[i] == 0) que.push(i);
}
while (!que.empty()) {
const int p = que.front();
que.pop();
ord.push_back(p);
for (auto &e: G[p]) {
if (e.cap > 0 && --deg[e.to] == 0) que.push(e.to);
}
}
return (*max_element(deg.begin(), deg.end()) == 0);
}
void calc_potential(const int s) {
h[s] = 0;
for (const int v: ord) {
if (h[v] == INF) continue;
for (const Edge &e: G[v]) {
if (e.cap > 0) h[e.to] = min(h[e.to], h[v] + e.cost);
}
}
}
void dijkstra(const int s) {
using Heap = boost::heap::fibonacci_heap<
DijkstraState, boost::heap::compare<std::greater<DijkstraState>>>;
Heap heap;
fill(dist.begin(), dist.end(), INF);
dist[s] = 0;
vector<optional<typename Heap::handle_type>> handles(V);
handles[s] = heap.push({dist[s], s});
while (not heap.empty()) {
const auto cur = heap.top();
heap.pop();
const int v = cur.node;
if (dist[v] < cur.dist) continue;
for (int i = 0; i < (int) G[v].size(); ++i) {
const Edge &e = G[v][i];
const Cost new_dist = dist[v] + e.cost + h[v] - h[e.to];
if (e.cap > 0 and dist[e.to] > new_dist) {
dist[e.to] = new_dist;
prevv[e.to] = v;
preve[e.to] = i;
if (handles[e.to]) {
heap.update(*handles[e.to], {new_dist, e.to});
} else {
handles[e.to] = heap.push({new_dist, e.to});
}
}
}
}
}
void update(const int s, const int t, Cap &f, Cost &res) {
for (int i = 0; i < V; i++) {
if (dist[i] != INF) h[i] += dist[i];
}
Cap d = f;
for (int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += h[t] * d;
for (int v = t; v != s; v = prevv[v]) {
Edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
};
auto solve() {
const int n = in, K = in;
vector<i64> a(n);
MinCostFlowDAG<int, i64> g(n);
REP(i, n) {
a[i] = in;
int m = in;
REP(j, m) {
int b = in;
--b;
i64 cost = a[b] - a[i];
if (cost < 0) {
g.add_edge(b, i, 1, cost);
}
}
}
REP(i, n - 1) { g.add_edge(i, i + 1, K, 0); }
auto ans = g.flow(0, n - 1, K);
assert(ans.has_value());
return -ans.value();
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(nullptr);
auto ans = solve();
print(ans);
}
keijak