結果

問題 No.1659 Product of Divisors
ユーザー LayCurse
提出日時 2021-09-13 22:49:48
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 10 ms / 2,000 ms
コード長 31,285 bytes
コンパイル時間 3,799 ms
コンパイル使用メモリ 253,712 KB
最終ジャッジ日時 2025-01-24 13:46:30
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
template<class T> struct cLtraits_identity{
using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
typename conditional<
is_integral<T>::value,
make_signed<T>,
cLtraits_identity<T>
>::type;
template <class S, class T> struct cLtraits_common_type{
using tS = typename cLtraits_try_make_signed<S>::type;
using tT = typename cLtraits_try_make_signed<T>::type;
using type = typename common_type<tS,tT>::type;
}
;
void*wmem;
char memarr[96000000];
template<class S, class T> inline auto min_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
return (typename cLtraits_common_type<S,T>::type) a <= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class S, class T> inline auto max_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
return (typename cLtraits_common_type<S,T>::type) a >= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
walloc1d(arr, x2-x1, mem);
(*arr) -= x1;
}
#define ISPRIME_PRE_CALC_SIZE 1000000
char isPrime_prime_table[ISPRIME_PRE_CALC_SIZE];
template<class T> inline int isPrime(T n);
void isPrime32_init(void);
int isPrime32_sub(int b, unsigned n);
int isPrime32(unsigned n);
int isPrime64_sub(long long b, unsigned long long n);
int isPrime64(unsigned long long n);
#define FACTOR_PRE_CALC_SIZE 1000000
int factor_hasprime_table[FACTOR_PRE_CALC_SIZE];
template<class T, class R1, class R2> int Factor(T N, R1 fac[], R2 fs[], void *mem = wmem);
template<class T, class R1> int Factor(T N, R1 fac[], void *mem = wmem);
template<class T> int Factor(T N, void *mem = wmem);
unsigned Factor32_rho(unsigned n);
template<class R1, class R2> int Factor32(unsigned N, R1 fac[], R2 fs[], void *mem = wmem);
unsigned long long Factor64_rho(unsigned long long n);
template<class R1, class R2> int Factor64(unsigned long long N, R1 fac[], R2 fs[], void *mem = wmem);
void Factor32_init(void);
template<class T1> void sortA_L(int N, T1 a[], void *mem = wmem){
sort(a, a+N);
}
struct Rand{
unsigned x;
unsigned y;
unsigned z;
unsigned w;
Rand(void){
x=123456789;
y=362436069;
z=521288629;
w=(unsigned)time(NULL);
}
Rand(unsigned seed){
x=123456789;
y=362436069;
z=521288629;
w=seed;
}
inline unsigned get(void){
unsigned t;
t = (x^(x<<11));
x=y;
y=z;
z=w;
w = (w^(w>>19))^(t^(t>>8));
return w;
}
inline double getUni(void){
return get()/4294967296.0;
}
inline int get(int a){
return (int)(a*getUni());
}
inline int get(int a, int b){
return a+(int)((b-a+1)*getUni());
}
inline long long get(long long a){
return(long long)(a*getUni());
}
inline long long get(long long a, long long b){
return a+(long long)((b-a+1)*getUni());
}
inline double get(double a, double b){
return a+(b-a)*getUni();
}
inline int getExp(int a){
return(int)(exp(getUni()*log(a+1.0))-1.0);
}
inline int getExp(int a, int b){
return a+(int)(exp(getUni()*log((b-a+1)+1.0))-1.0);
}
}
;
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator++(){
val++;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator--(){
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return *this;
}
inline Modint operator++(int a){
Modint res(*this);
val++;
if(val >= MD){
val -= MD;
}
return res;
}
inline Modint operator--(int a){
Modint res(*this);
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return res;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(long long &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(unsigned x){
int s=0;
char f[10];
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(long long x){
int s=0;
int m=0;
char f[20];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(unsigned long long x){
int s=0;
char f[21];
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
int WRITER_DOUBLE_DIGIT = 15;
inline int writerDigit_double(){
return WRITER_DOUBLE_DIGIT;
}
inline void writerDigit_double(int d){
WRITER_DOUBLE_DIGIT = d;
}
inline void wt_L(double x){
const int d = WRITER_DOUBLE_DIGIT;
int k;
int r;
double v;
if(x!=x || (x==x+1 && x==2*x)){
my_putchar_unlocked('E');
my_putchar_unlocked('r');
my_putchar_unlocked('r');
return;
}
if(x < 0){
my_putchar_unlocked('-');
x = -x;
}
x += 0.5 * pow(0.1, d);
r = 0;
v = 1;
while(x >= 10*v){
v *= 10;
r++;
}
while(r >= 0){
r--;
k = floor(x / v);
if(k >= 10){
k = 9;
}
if(k <= -1){
k = 0;
}
x -= k * v;
v *= 0.1;
my_putchar_unlocked(k + '0');
}
if(d > 0){
my_putchar_unlocked('.');
v = 1;
for(r=(0);r<(d);r++){
v *= 0.1;
k = floor(x / v);
if(k >= 10){
k = 9;
}
if(k <= -1){
k = 0;
}
x -= k * v;
my_putchar_unlocked(k + '0');
}
}
}
inline void wt_L(const char c[]){
int i=0;
for(i=0;c[i]!='\0';i++){
my_putchar_unlocked(c[i]);
}
}
inline void wt_L(string &x){
int i=0;
for(i=0;x[i]!='\0';i++){
my_putchar_unlocked(x[i]);
}
}
template<class T> inline T pow2_L(T a){
return a*a;
}
template<class T, class U> inline T GCD_L(T a, U b){
T r;
while(b){
r=a;
a=b;
b=r%a;
}
return a;
}
template<class S, class T> inline S chmax(S &a, T b){
if(a<b){
a=b;
}
return a;
}
template<class T> struct Comb{
int mem_fact;
T*factri;
T*ifactri;
int mem_dfact;
T*dfactri;
int mem_pw2;
int mem_pw3;
int mem_pw10;
int mem_rep1;
T*pw2c;
T*pw3c;
T*pw10c;
T*rep1c;
int mem_ipw2;
int mem_ipw3;
int mem_ipw10;
T*ipw2c;
T*ipw3c;
T*ipw10c;
Comb(){
mem_fact = 0;
mem_dfact = 0;
mem_pw2 = mem_pw3 = mem_pw10 = mem_rep1 = 0;
mem_ipw2 = mem_ipw3 = mem_ipw10 = 0;
}
inline void expand_fact(int k){
int i;
if(k <= mem_fact){
return;
}
chmax(k, 2 * mem_fact);
if(mem_fact == 0){
factri = (T*)malloc(k * sizeof(T));
ifactri = (T*)malloc(k * sizeof(T));
factri[0] = 1;
for(i=(1);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(0);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
else{
factri = (T*)realloc(factri, k * sizeof(T));
ifactri = (T*)realloc(ifactri, k * sizeof(T));
for(i=(mem_fact);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(mem_fact);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
mem_fact = k;
}
inline T fac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return factri[k];
}
inline T ifac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return ifactri[k];
}
inline T C(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[b] * ifactri[a-b];
}
inline T P(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[a-b];
}
inline T H(int a, int b){
if(a==0 && b==0){
return 1;
}
if(a <= 0 || b < 0){
return 0;
}
if(mem_fact < a+b){
expand_fact(a+b);
}
return C(a+b-1, b);
}
inline T Multinomial(int sz, int a[]){
int i;
int s = 0;
T res;
for(i=(0);i<(sz);i++){
s += a[i];
}
if(mem_fact < s+1){
expand_fact(s+1);
}
res = factri[s];
for(i=(0);i<(sz);i++){
res *= ifactri[a[i]];
}
return res;
}
inline T Multinomial(int a){
return 1;
}
inline T Multinomial(int a, int b){
if(mem_fact < a+b+1){
expand_fact(a+b+1);
}
return factri[a+b] * ifactri[a] * ifactri[b];
}
inline T Multinomial(int a, int b, int c){
if(mem_fact < a+b+c+1){
expand_fact(a+b+c+1);
}
return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c];
}
inline T Multinomial(int a, int b, int c, int d){
if(mem_fact < a+b+c+d+1){
expand_fact(a+b+c+d+1);
}
return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d];
}
inline T Catalan(int n){
if(n < 0){
return 0;
}
if(mem_fact < 2*n+1){
expand_fact(2*n+1);
}
return factri[2*n] * ifactri[n] * ifactri[n+1];
}
inline T Catalan(int n, int m, int k){
if(k <= 0){
return C(n+m, n);
}
if(n < k || m < k){
return 0;
}
return C(n+m, m) - C(n+m, k-1);
}
inline T Catalan_s(long long n, long long m, long long k){
if(k <= 0){
return C_s(n+m, n);
}
if(n < k || m < k){
return 0;
}
return C_s(n+m, m) - C_s(n+m, k-1);
}
inline T C_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
if(b > a - b){
b = a - b;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
res /= i + 1;
}
return res;
}
inline T P_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
}
return res;
}
inline T H_s(long long a, long long b){
if(a==0 && b==0){
return 1;
}
if(a <= 0 || b < 0){
return 0;
}
return C_s(a+b-1, b);
}
inline T per_s(long long n, long long k){
T d;
int m;
if(n < 0 || k < 0){
return 0;
}
if(n == k && k == 0){
return 1;
}
if(n == 0 || k == 0){
return 0;
}
if(k==1){
return 1;
}
if(k==2){
d = n / 2;
return d;
}
if(k==3){
d = (n-1) / 6;
m = (n-1) % 6;
if(m==0){
return 3 * d * d + d;
}
if(m==1){
return 3 * d * d + 2 * d;
}
if(m==2){
return 3 * d * d + 3 * d + 1;
}
if(m==3){
return 3 * d * d + 4 * d + 1;
}
if(m==4){
return 3 * d * d + 5 * d + 2;
}
if(m==5){
return 3 * d * d + 6 * d + 3;
}
}
assert(0 && "per_s should be k <= 3");
return -1;
}
inline void expand_dfact(int k){
int i;
if(k <= mem_dfact){
return;
}
chmax(k, 3);
chmax(k, 2 * mem_dfact);
if(mem_dfact==0){
dfactri = (T*)malloc(k * sizeof(T));
dfactri[0] = dfactri[1] = 1;
for(i=(2);i<(k);i++){
dfactri[i] = i * dfactri[i-2];
}
}
else{
dfactri = (T*)realloc(dfactri, k * sizeof(T));
for(i=(mem_dfact);i<(k);i++){
dfactri[i] = i * dfactri[i-2];
}
}
mem_dfact = k;
}
inline void expand_pw2(int k){
int i;
if(k <= mem_pw2){
return;
}
chmax(k, 2 * mem_pw2);
if(mem_pw2==0){
pw2c = (T*)malloc(k * sizeof(T));
pw2c[0] = 1;
for(i=(1);i<(k);i++){
pw2c[i] = 2 * pw2c[i-1];
}
}
else{
pw2c = (T*)realloc(pw2c, k * sizeof(T));
for(i=(mem_pw2);i<(k);i++){
pw2c[i] = 2 * pw2c[i-1];
}
}
mem_pw2 = k;
}
inline void expand_ipw2(int k){
int i;
if(k <= mem_ipw2){
return;
}
chmax(k, 2);
chmax(k, 2 * mem_ipw2);
if(mem_ipw2==0){
ipw2c = (T*)malloc(k * sizeof(T));
ipw2c[0] = 1;
ipw2c[1] = ipw2c[0] / 2;
for(i=(1);i<(k);i++){
ipw2c[i] = ipw2c[1] * ipw2c[i-1];
}
}
else{
ipw2c = (T*)realloc(ipw2c, k * sizeof(T));
for(i=(mem_ipw2);i<(k);i++){
ipw2c[i] = ipw2c[1] * ipw2c[i-1];
}
}
mem_ipw2 = k;
}
inline void expand_pw3(int k){
int i;
if(k <= mem_pw3){
return;
}
chmax(k, 2 * mem_pw3);
if(mem_pw3==0){
pw3c = (T*)malloc(k * sizeof(T));
pw3c[0] = 1;
for(i=(1);i<(k);i++){
pw3c[i] = 3 * pw3c[i-1];
}
}
else{
pw3c = (T*)realloc(pw3c, k * sizeof(T));
for(i=(mem_pw3);i<(k);i++){
pw3c[i] = 3 * pw3c[i-1];
}
}
mem_pw3 = k;
}
inline void expand_ipw3(int k){
int i;
if(k <= mem_ipw3){
return;
}
chmax(k, 2);
chmax(k, 2 * mem_ipw3);
if(mem_ipw3==0){
ipw3c = (T*)malloc(k * sizeof(T));
ipw3c[0] = 1;
ipw3c[1] = ipw3c[0] / 3;
for(i=(1);i<(k);i++){
ipw3c[i] = ipw3c[1] * ipw3c[i-1];
}
}
else{
ipw3c = (T*)realloc(ipw3c, k * sizeof(T));
for(i=(mem_ipw3);i<(k);i++){
ipw3c[i] = ipw3c[1] * ipw3c[i-1];
}
}
mem_ipw3 = k;
}
inline void expand_pw10(int k){
int i;
if(k <= mem_pw10){
return;
}
chmax(k, 2 * mem_pw10);
if(mem_pw10==0){
pw10c = (T*)malloc(k * sizeof(T));
pw10c[0] = 1;
for(i=(1);i<(k);i++){
pw10c[i] = 10 * pw10c[i-1];
}
}
else{
pw10c = (T*)realloc(pw10c, k * sizeof(T));
for(i=(mem_pw10);i<(k);i++){
pw10c[i] = 10 * pw10c[i-1];
}
}
mem_pw10 = k;
}
inline void expand_ipw10(int k){
int i;
if(k <= mem_ipw10){
return;
}
chmax(k, 2);
chmax(k, 2 * mem_ipw10);
if(mem_ipw10==0){
ipw10c = (T*)malloc(k * sizeof(T));
ipw10c[0] = 1;
ipw10c[1] = ipw10c[0] / 10;
for(i=(1);i<(k);i++){
ipw10c[i] = ipw10c[1] * ipw10c[i-1];
}
}
else{
ipw10c = (T*)realloc(ipw10c, k * sizeof(T));
for(i=(mem_ipw10);i<(k);i++){
ipw10c[i] = ipw10c[1] * ipw10c[i-1];
}
}
mem_ipw10 = k;
}
inline void expand_rep1(int k){
int i;
if(k <= mem_rep1){
return;
}
chmax(k, 2 * mem_rep1);
if(mem_rep1==0){
rep1c = (T*)malloc(k * sizeof(T));
rep1c[0] = 0;
for(i=(1);i<(k);i++){
rep1c[i] = 10 * rep1c[i-1] + 1;
}
}
else{
rep1c = (T*)realloc(rep1c, k * sizeof(T));
for(i=(mem_rep1);i<(k);i++){
rep1c[i] = 10 * rep1c[i-1] + 1;
}
}
mem_rep1 = k;
}
inline T dfac(int k){
if(k >= 0){
if(mem_dfact < k+1){
expand_dfact(k+1);
}
return dfactri[k];
}
if(k==-1){
return 1;
}
k = - k - 2;
if(k % 4 == 1){
return 1 / (-dfac(k));
}
return 1 / dfac(k);
}
inline T pw2(int k){
if(k >= 0){
if(mem_pw2 < k+1){
expand_pw2(k+1);
}
return pw2c[k];
}
else{
k = -k;
if(mem_ipw2 < k+1){
expand_ipw2(k+1);
}
return ipw2c[k];
}
}
inline T pw3(int k){
if(k >= 0){
if(mem_pw3 < k+1){
expand_pw3(k+1);
}
return pw3c[k];
}
else{
k = -k;
if(mem_ipw3 < k+1){
expand_ipw3(k+1);
}
return ipw3c[k];
}
}
inline T pw10(int k){
if(k >= 0){
if(mem_pw10 < k+1){
expand_pw10(k+1);
}
return pw10c[k];
}
else{
k = -k;
if(mem_ipw10 < k+1){
expand_ipw10(k+1);
}
return ipw10c[k];
}
}
inline T repunit(int k){
if(mem_rep1 < k+1){
expand_rep1(k+1);
}
return rep1c[k];
}
}
;
template<> inline Modint Comb<Modint>::C_s(long long a, long long b){
long long i;
Modint res;
Modint d;
if(b < 0 || b > a){
return 0;
}
if(b > a - b){
b = a - b;
}
res = d = 1;
for(i=(0);i<(b);i++){
res *= a - i;
d *= i + 1;
}
return res / d;
}
inline long long Isqrt_f_L(const long long n){
long long r = sqrt(n);
r =max_L(r-2, 0);
while((pow2_L((r+1)))<= n ){
r++;
}
return r;
}
int main(){
wmem = memarr;
{
isPrime32_init();
}
{
Factor32_init();
}
long long N;
rd(N);
long long K;
rd(K);
int fs;
long long f[30];
int fn[30];
Comb<Modint> comb;
fs = Factor(N,f,fn);
int Lj4PdHRW;
remove_reference<decltype(comb.H_s(K+1,fn[Lj4PdHRW]))>::type KL2GvlyY;
int Q5VJL1cS = 0;
if((0) > ((fs)-1)){
KL2GvlyY = 1;
}
else{
for(Lj4PdHRW = 0; Lj4PdHRW <= (fs)-1; Lj4PdHRW++){
if(Q5VJL1cS == 0){
KL2GvlyY = comb.H_s(K+1,fn[Lj4PdHRW]);
Q5VJL1cS = 1;
continue;
}
KL2GvlyY *= comb.H_s(K+1,fn[Lj4PdHRW]);
}
if(Q5VJL1cS==0){
KL2GvlyY = 1;
}
}
wt_L(KL2GvlyY);
wt_L('\n');
return 0;
}
template<class T> inline int isPrime(T n){
T i;
if(n<=1){
return 0;
}
if(n <= (1ULL<<32) - 1){
return isPrime32(n);
}
if(n <= (1ULL<<63) - 1 + (1ULL<<63)){
return isPrime64(n);
}
if(n<=3){
return 1;
}
if(n%2==0){
return 0;
}
for(i=3;i*i<=n;i+=2){
if(n%i==0){
return 0;
}
}
return 1;
}
int isPrime32_sub(int b, unsigned n){
unsigned i;
unsigned t = 0;
unsigned u = n-1;
unsigned long long nw;
unsigned long long nx;
while(!(u&1)){
t++;
u >>= 1;
}
nw = 1;
nx = b % n;
while(u){
if(u&1){
nw = (nw * nx) % n;
}
nx = (nx * nx) % n;
u >>= 1;
}
for(i=(0);i<(t);i++){
nx = (nw * nw) % n;
if(nx == 1 && nw != 1 && nw != n-1){
return 0;
}
nw = nx;
}
if(nw == 1){
return 1;
}
return 0;
}
int isPrime32(unsigned n){
if(n < 100000){
return isPrime_prime_table[n];
}
if(n % 2 == 0){
return 0;
}
if(!isPrime32_sub(2,n)){
return 0;
}
if(n<=1000000){
if(!isPrime32_sub(3,n)){
return 0;
}
}
else{
if(!isPrime32_sub(7,n)){
return 0;
}
if(!isPrime32_sub(61,n)){
return 0;
}
}
return 1;
}
int isPrime64_sub(long long b, unsigned long long n){
unsigned long long i;
unsigned long long t = 0;
unsigned long long u = n-1;
__uint128_t nw;
__uint128_t nx;
while(!(u&1)){
t++;
u >>= 1;
}
nw = 1;
nx = b % n;
while(u){
if(u&1){
nw = (nw * nx) % n;
}
nx = (nx * nx) % n;
u >>= 1;
}
for(i=(0);i<(t);i++){
nx = (nw * nw) % n;
if(nx == 1 && nw != 1 && nw != n-1){
return 0;
}
nw = nx;
}
if(nw == 1){
return 1;
}
return 0;
}
int isPrime64(unsigned long long n){
if(n < 100000){
return isPrime_prime_table[n];
}
if(n < (1ULL<<32)){
return isPrime32(n);
}
if(n % 2 == 0){
return 0;
}
if(!isPrime64_sub(2,n)){
return 0;
}
if(n <= 21652684502221ULL){
if(!isPrime64_sub(1215,n)){
return 0;
}
if(!isPrime64_sub(34862,n)){
return 0;
}
if(!isPrime64_sub(574237825,n)){
return 0;
}
}
else{
if(!isPrime64_sub(325,n)){
return 0;
}
if(!isPrime64_sub(9375,n)){
return 0;
}
if(!isPrime64_sub(28178,n)){
return 0;
}
if(!isPrime64_sub(450775,n)){
return 0;
}
if(!isPrime64_sub(9780504,n)){
return 0;
}
if(!isPrime64_sub(1795265022,n)){
return 0;
}
}
return 1;
}
void isPrime32_init(void){
int i;
int j;
int k;
k =Isqrt_f_L(ISPRIME_PRE_CALC_SIZE);
for(i=(2);i<(ISPRIME_PRE_CALC_SIZE);i++){
isPrime_prime_table[i] = 1;
}
for(i=(2);i<(k+1);i++){
if(isPrime_prime_table[i]){
for(j=(i*i);j<(ISPRIME_PRE_CALC_SIZE);j+=(i)){
isPrime_prime_table[j] = 0;
}
}
}
}
template<class T, class R1, class R2> int Factor(T N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
T i;
int sz = 0;
if(N <= 1){
return sz;
}
if(N <= (1ULL<<32) - 1){
return Factor32(N, fac, fs, mem);
}
if(N <= (1ULL<<63) - 1 + (1ULL<<63)){
return Factor64(N, fac, fs, mem);
}
if(N%2==0){
fac[sz] = 2;
fs[sz] = 1;
N /= 2;
while(N%2==0){
N /= 2;
fs[sz]++;
}
sz++;
}
for(i=3;i*i<=N;i+=2){
if(N%i==0){
fac[sz] = i;
fs[sz] = 1;
N /= i;
while(N%i==0){
N /= i;
fs[sz]++;
}
sz++;
}
}
if(N > 1){
fac[sz] = N;
fs[sz] = 1;
sz++;
}
return sz;
}
template<class T, class R1> int Factor(T N, R1 fac[], void *mem/* = wmem*/){
int*fs;
walloc1d(&fs,128,&mem);
return Factor(N, fac, fs, mem);
}
template<class T> int Factor(T N, void *mem/* = wmem*/){
T*fac;
int*fs;
walloc1d(&fac,128,&mem);
walloc1d(&fs,128,&mem);
return Factor(N, fac, fs, mem);
}
unsigned Factor32_rho(unsigned n){
static Rand rnd;
const int step = 16;
int i;
int s;
int nx;
int mx;
unsigned long long x;
unsigned long long y;
unsigned long long memo;
unsigned long long c;
unsigned long long m;
unsigned g;
long long lm;
lm =min_L(1ULL<<30, n - 1);
for(;;){
x = y = rnd.get(1LL, lm);
c = rnd.get(1LL, lm);
g = 1;
for(nx=1;g==1;nx<<=1){
x = y;
for(i=(0);i<(nx);i++){
y = (y * y + c) % n;
}
for(s=0;s<nx&&g==1;s+=step){
m = 1;
memo = y;
mx =min_L(step, nx-s);
for(i=(0);i<(mx);i++){
y = (y * y + c) % n;
if(x >= y){
m = (m * (x - y)) % n;
}
else{
m = (m * (y - x)) % n;
}
}
g =GCD_L(n, m);
if(g != 1){
if(g != n){
return g;
}
y = memo;
for(;;){
y = (y * y + c) % n;
if(x >= y){
m = x - y;
}
else{
m = y - x;
}
g =GCD_L(n, m);
if(g == n){
break;
}
if(g != 1){
return g;
}
}
}
}
}
}
return 0;
}
template<class R1, class R2> int Factor32(unsigned N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
int res = 0;
int sz = 0;
int i;
int k;
unsigned*val;
unsigned*valtmp;
unsigned pf;
unsigned n;
if(N <= 1){
return 0;
}
walloc1d(&val, 128, &mem);
walloc1d(&valtmp, 128, &mem);
while(N%2==0){
val[res++] = 2;
N /= 2;
}
while(N%3==0){
val[res++] = 3;
N /= 3;
}
while(N%5==0){
val[res++] = 5;
N /= 5;
}
if(N > 1){
valtmp[sz++] = N;
}
while(sz){
while(sz && isPrime32(valtmp[sz-1])){
val[res] = valtmp[sz-1];
res++;
sz--;
}
if(sz==0){
break;
}
n = valtmp[sz-1];
if(n < FACTOR_PRE_CALC_SIZE){
while(n > 1){
val[res++] = factor_hasprime_table[n];
n /= factor_hasprime_table[n];
}
sz--;
}
else{
pf = Factor32_rho(n);
valtmp[sz-1] = pf;
valtmp[sz] = n / pf;
sz++;
}
}
sortA_L(res, val, mem);
k = 0;
for(i=(0);i<(res);i++){
if(k && fac[k-1] == val[i]){
fs[k-1]++;
continue;
}
fac[k] = val[i];
fs[k] = 1;
k++;
}
res = k;
return res;
}
unsigned long long Factor64_rho(unsigned long long n){
static Rand rnd;
const int step = 16;
int i;
int s;
int nx;
int mx;
__uint128_t x;
__uint128_t y;
__uint128_t memo;
__uint128_t c;
__uint128_t m;
unsigned long long g;
long long lm;
lm =min_L(1ULL<<30, n - 1);
for(;;){
x = y = rnd.get(1LL, lm);
c = rnd.get(1LL, lm);
g = 1;
for(nx=1;g==1;nx<<=1){
x = y;
for(i=(0);i<(nx);i++){
y = (y * y + c) % n;
}
for(s=0;s<nx&&g==1;s+=step){
m = 1;
memo = y;
mx =min_L(step, nx-s);
for(i=(0);i<(mx);i++){
y = (y * y + c) % n;
if(x >= y){
m = (m * (x - y)) % n;
}
else{
m = (m * (y - x)) % n;
}
}
g =GCD_L(n, m);
if(g != 1){
if(g != n){
return g;
}
y = memo;
for(;;){
y = (y * y + c) % n;
if(x >= y){
m = x - y;
}
else{
m = y - x;
}
g =GCD_L(n, m);
if(g == n){
break;
}
if(g != 1){
return g;
}
}
}
}
}
}
return 0;
}
template<class R1, class R2> int Factor64(unsigned long long N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
int res = 0;
int sz = 0;
int i;
int k;
unsigned long long*val;
unsigned long long*valtmp;
unsigned long long pf;
unsigned long long n;
if(N <= 1){
return 0;
}
walloc1d(&val, 128, &mem);
walloc1d(&valtmp, 128, &mem);
while(N%2==0){
val[res++] = 2;
N /= 2;
}
while(N%3==0){
val[res++] = 3;
N /= 3;
}
while(N%5==0){
val[res++] = 5;
N /= 5;
}
if(N > 1){
valtmp[sz++] = N;
}
while(sz){
while(sz && isPrime64(valtmp[sz-1])){
val[res] = valtmp[sz-1];
res++;
sz--;
}
if(sz==0){
break;
}
n = valtmp[sz-1];
if(n < FACTOR_PRE_CALC_SIZE){
while(n > 1){
val[res++] = factor_hasprime_table[n];
n /= factor_hasprime_table[n];
}
sz--;
}
else if(n < (1ULL<<32)){
pf = Factor32_rho(n);
valtmp[sz-1] = pf;
valtmp[sz] = n / pf;
sz++;
}
else{
pf = Factor64_rho(n);
valtmp[sz-1] = pf;
valtmp[sz] = n / pf;
sz++;
}
}
sortA_L(res, val, mem);
k = 0;
for(i=(0);i<(res);i++){
if(k && fac[k-1] == val[i]){
fs[k-1]++;
continue;
}
fac[k] = val[i];
fs[k] = 1;
k++;
}
res = k;
return res;
}
void Factor32_init(void){
int i;
int j;
int k;
k =Isqrt_f_L(FACTOR_PRE_CALC_SIZE);
for(i=(2);i<(FACTOR_PRE_CALC_SIZE);i++){
factor_hasprime_table[i] = i;
}
for(i=(2);i<(k+1);i++){
if(factor_hasprime_table[i]==i){
for(j=(i*i);j<(FACTOR_PRE_CALC_SIZE);j+=(i)){
factor_hasprime_table[j] = i;
}
}
}
}
// cLay version 20210913-1
// --- original code ---
// ll @N, @K;
// int fs; ll f[30]; int fn[];
// Comb<Modint> comb;
// fs = Factor(N,f,fn);
// wt(mul[i,0,fs](comb.H_s(K+1,fn[i])));
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0