結果
| 問題 | No.199 星を描こう |
| コンテスト | |
| ユーザー |
brthyyjp
|
| 提出日時 | 2021-09-21 10:32:22 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 41 ms / 2,000 ms |
| コード長 | 5,002 bytes |
| コンパイル時間 | 251 ms |
| コンパイル使用メモリ | 83,016 KB |
| 実行使用メモリ | 55,568 KB |
| 最終ジャッジ日時 | 2024-07-03 16:16:44 |
| 合計ジャッジ時間 | 2,242 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
import math
class Vector:
def __init__(self, ls: list):
self.vec = ls
def __len__(self):
return len(self.vec)
def __getitem__(self, idx):
return self.vec[idx]
def __repr__(self):
return f'Vector({self.vec})'
def add(self, vec):
assert len(self) == len(vec)
ret = [a+b for a, b in zip(self.vec, vec.vec)]
return Vector(ret)
def sub(self, vec):
assert len(self) == len(vec)
ret = [a-b for a, b in zip(self.vec, vec.vec)]
return Vector(ret)
def mul(self, vec):
assert len(self) == len(vec)
ret = [a*b for a, b in zip(self.vec, vec.vec)]
return Vector(ret)
def scalar_mul(self, x):
ret = [a*x for a in self.vec]
return Vector(ret)
def scalar_div(self, x):
ret = [a/x for a in self.vec]
return Vector(ret)
def norm(self):
return math.sqrt(sum([x*x for x in self.vec]))
def dot(a, b):
return sum(a.mul(b))
def cross(a, b):
#outer product of 2d vector
assert len(a) == 2 and len(b) == 2
first = a[0]*b[1]
second = a[1]*b[0]
return first-second
EPS = 10**(-9)
def ccw(p0, p1, p2):
# p0からp1に向かうベクトルの向きに対して、p2の位置を返す
a = p1.sub(p0)
b = p2.sub(p0)
if cross(a, b) > EPS:
return 1
#'COUNTER_CLOCKWISE'
# p0->p1反時計回りの方向にp2
elif cross(a, b) < -EPS:
return -1
#'CLOCKWISE'
# p0->p1時計回りの方向にp2
elif dot(a, b) < -EPS:
return 2
#'ONLINE_BACK'
# p2->p0->p1の順で直線上にp2
elif a.norm() < b.norm():
return -2
#'ONLINE_FRONT'
# p0->p1->p2の順で直線上にp2
else:
return 0
#'ON_SEGMENT'
#p0->p2->p1の順で線分p0p1上にp2
def intersect(p0, p1, p2, p3):
if ccw(p0, p1, p2) *ccw(p0, p1, p3) <= 0 and ccw(p2, p3, p0) *ccw(p2, p3, p1) <= 0:
return True
else:
return False
def getDistanceLP(p0, p1, p):
return abs(cross(p1.sub(p0), p.sub(p0)))/p1.sub(p0).norm()
def getDistanceSP(p0, p1, p):
if dot(p1.sub(p0), p.sub(p0)) < 0:
return p.sub(p0).norm()
if dot(p0.sub(p1), p.sub(p1)) < 0:
return p.sub(p1).norm()
return getDistanceLP(p0, p1, p)
def area(polygon):
s = 0
for i in range(len(polygon)):
s += cross(polygon[i-1], polygon[i])
s /= 2
return s
def is_convex(polygon, pi_is_ok=False):
# 内角が180度以下のとき: pi_is_ok = True
# 内角が180度未満のとき: pi_is_ok = False
if not pi_is_ok:
ccw0 = ccw(polygon[0], polygon[1], polygon[2])
if ccw0 not in {-1, 1}:
return False
for i in range(len(polygon)):
if ccw(polygon[i-2], polygon[i-1], polygon[i]) != ccw0:
return False
return True
else:
ccws = set()
for i in range(len(polygon)):
ccw1 = ccw(polygon[i-2], polygon[i-1], polygon[i])
if ccw1 not in {-1, 1}:
continue
ccws.add(ccw1)
if len(ccws) <= 1:
return True
else:
return False
def is_contain(polygon, p):
# 2: pがpolygonに含まれる
# 1: pがpolygonの辺上
# 0: それ以外
n = len(polygon)
in_ = False
for i in range(n):
a = polygon[i].sub(p)
b = polygon[(i+1)%n].sub(p)
if abs(cross(a, b)) < EPS and dot(a, b) < EPS:
return 1
if a[1] > b[1]:
a, b = b, a
if a[1] < EPS and EPS < b[1] and cross(a, b) > EPS:
in_ = not in_
if in_:
return 2
else:
return 0
def is_ccw(p0, p1, p2):
a = p1.sub(p0)
b = p2.sub(p0)
if cross(a, b) > EPS:
return True
else:
return False
def monotone_chain(points):
points.sort(key=lambda x: (x[0], x[1]))
if len(points) <= 2:
return points
upper_conv = [points[0], points[1]]
# 後ろから2番目の点と後ろから1番目の点のなすベクトルに対して、新たに加える点が反時計回りだと凸にならない
for p in points[2:]:
while len(upper_conv) >= 2 and is_ccw(upper_conv[-2], upper_conv[-1], p):
upper_conv.pop()
upper_conv.append(p)
points = points[::-1]
lower_conv = [points[0], points[1]]
for p in points[2:]:
while len(lower_conv) >= 2 and is_ccw(lower_conv[-2], lower_conv[-1], p):
lower_conv.pop()
lower_conv.append(p)
res = upper_conv[1:-1]+lower_conv
# 反時計回りで出力
return res[::-1]
points = []
for i in range(5):
x, y = map(int, input().split())
points.append(Vector([x, y]))
conv = monotone_chain(points)
if len(conv) != 5:
print('NO')
exit()
for i in range(5):
c = ccw(conv[i-2], conv[i-1], conv[i])
if c in {2, -2, 0}:
print('NO')
exit()
else:
print('YES')
brthyyjp