結果

問題 No.1691 Badugi
ユーザー 👑 emthrmemthrm
提出日時 2021-09-24 22:50:40
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 17 ms / 2,000 ms
コード長 7,104 bytes
コンパイル時間 2,516 ms
コンパイル使用メモリ 212,384 KB
実行使用メモリ 9,088 KB
最終ジャッジ日時 2024-07-05 11:06:46
合計ジャッジ時間 2,932 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 16 ms
9,088 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 1 ms
6,944 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 17 ms
9,088 KB
testcase_09 AC 15 ms
9,088 KB
testcase_10 AC 15 ms
8,960 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 12 ms
7,424 KB
testcase_14 AC 16 ms
9,088 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 16 ms
9,088 KB
testcase_18 AC 4 ms
6,940 KB
testcase_19 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <int M>
struct MInt {
  unsigned int val;
  MInt(): val(0) {}
  MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}
  static constexpr int get_mod() { return M; }
  static void set_mod(int divisor) { assert(divisor == M); }
  static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }
  static MInt inv(int x, bool init = false) {
    // assert(0 <= x && x < M && std::__gcd(x, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    int prev = inverse.size();
    if (init && x >= prev) {
      // "x!" and "M" must be disjoint.
      inverse.resize(x + 1);
      for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);
    }
    if (x < inverse.size()) return inverse[x];
    unsigned int a = x, b = M; int u = 1, v = 0;
    while (b) {
      unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }
  static MInt fact(int x) {
    static std::vector<MInt> f{1};
    int prev = f.size();
    if (x >= prev) {
      f.resize(x + 1);
      for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;
    }
    return f[x];
  }
  static MInt fact_inv(int x) {
    static std::vector<MInt> finv{1};
    int prev = finv.size();
    if (x >= prev) {
      finv.resize(x + 1);
      finv[x] = inv(fact(x).val);
      for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;
    }
    return finv[x];
  }
  static MInt nCk(int n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    if (n - k > k) k = n - k;
    return fact(n) * fact_inv(k) * fact_inv(n - k);
  }
  static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }
  static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }
  static MInt large_nCk(long long n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv(k, true);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) res *= inv(i) * n--;
    return res;
  }
  MInt pow(long long exponent) const {
    MInt tmp = *this, res = 1;
    while (exponent > 0) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
      exponent >>= 1;
    }
    return res;
  }
  MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }
  MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }
  MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }
  MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }
  bool operator==(const MInt &x) const { return val == x.val; }
  bool operator!=(const MInt &x) const { return val != x.val; }
  bool operator<(const MInt &x) const { return val < x.val; }
  bool operator<=(const MInt &x) const { return val <= x.val; }
  bool operator>(const MInt &x) const { return val > x.val; }
  bool operator>=(const MInt &x) const { return val >= x.val; }
  MInt &operator++() { if (++val == M) val = 0; return *this; }
  MInt operator++(int) { MInt res = *this; ++*this; return res; }
  MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }
  MInt operator--(int) { MInt res = *this; --*this; return res; }
  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(val ? M - val : 0); }
  MInt operator+(const MInt &x) const { return MInt(*this) += x; }
  MInt operator-(const MInt &x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt &x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt &x) const { return MInt(*this) /= x; }
  friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }
  friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }
};
namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }
using ModInt = MInt<MOD>;

ModInt f(int n, int m, int k) {
  return k == 0 ? 1 : ModInt::nCk(n, k) * ModInt::nPk(m, k);
}

int main() {
  int n, m, k; cin >> n >> m >> k;
  ModInt::init(max(n, m));
  k -= 2;
  ModInt ans = 0;
  // X
  // |
  // X
  // |
  // X
  ans += ModInt::nCk(n, 3) * m * f(n - 3, m - 1, k - 1);
  // X--X--X
  ans += ModInt::nCk(m, 3) * n * f(n - 1, m - 3, k - 1);
  // X
  // |
  // X--X
  // |
  // X
  if (k >= 2) ans += ModInt::nCk(n, 3) * m * 3 * (m - 1) * f(n - 3, m - 2, k - 2);
  // X--X--X
  //    |
  //    X
  if (k >= 2) ans += ModInt::nCk(m, 3) * n * 3 * (n - 1) * f(n - 2, m - 3, k - 2);
  // X
  // |
  // X--X
  // |
  // X----X
  if (k >= 3) ans += ModInt::nCk(n, 3) * m * ModInt::nCk(3, 2) * (m - 1) * (m - 2) * f(n - 3, m - 3, k - 3);
  // X--X--X
  //    |  |
  //    X  |
  //       |
  //       X
  if (k >= 3) ans += ModInt::nCk(m, 3) * n * ModInt::nCk(3, 2) * (n - 1) * (n - 2) * f(n - 3, m - 3, k - 3);
  // X
  // |
  // X--X
  //    |
  //    X
  if (k >= 2) ans += ModInt(n) * ModInt::nCk(m, 2) * (n - 1) * (n - 2) * f(n - 3, m - 2, k - 2);
  // X--X
  //    |
  //    X--X
  if (k >= 2) ans += ModInt(m) * ModInt::nCk(n, 2) * (m - 1) * (m - 2) * f(n - 2, m - 3, k - 2);
  // X--X
  // |  |
  // X--X
  if (k >= 2) ans += ModInt::nCk(n, 2) * ModInt::nCk(m, 2) * f(n - 2, m - 2, k - 2);
  // X
  // |
  // X--X
  //    |
  //    X--X
  if (k >= 3) ans += ModInt(n) * m * (n - 1) * (m - 1) * (n - 2) * (m - 2) * f(n - 3, m - 3, k - 3);
  // X--X
  //      X--X
  if (k >= 2) ans += ModInt::nCk(n, 2) * ModInt::nCk(m, 4) * ModInt::nCk(4, 2) * f(n - 2, m - 4, k - 2);
  // X--X
  //      X
  //      |
  //      X
  if (k >= 2) ans += ModInt(n) * ModInt::nCk(m, 2) * (m - 2) * ModInt::nCk(n - 1, 2) * f(n - 3, m - 3, k - 2);
  // X
  // | X
  // X |
  //   X
  if (k >= 2) ans += ModInt::nCk(m, 2) * ModInt::nCk(n, 4) * ModInt::nCk(4, 2) * f(n - 4, m - 2, k - 2);
  // X--X
  //    | X--X
  //    X
  if (k >= 3) ans += ModInt(n) * m * (n - 1) * (m - 1) * (n - 2) * ModInt::nCk(m - 2, 2) * f(n - 3, m - 4, k - 3);
  // X--X
  //    | X
  //    X |
  //      X
  if (k >= 3) ans += ModInt(n) * m * (n - 1) * (m - 1) * (m - 2) * ModInt::nCk(n - 2, 2) * f(n - 4, m - 3, k - 3);
  // X--X
  //    | X--X
  //    X    |
  //         X
  if (k >= 4) ans += ModInt::nCk(n, 2) * ModInt::nCk(m, 2) * 2 * (n - 2) * (m - 2) * (n - 3) * (m - 3) * f(n - 4, m - 4, k - 4);
  cout << ans << '\n';
  return 0;
}
0