結果

問題 No.1691 Badugi
ユーザー koba-e964koba-e964
提出日時 2021-09-25 02:21:33
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 10 ms / 2,000 ms
コード長 6,589 bytes
コンパイル時間 12,999 ms
コンパイル使用メモリ 382,732 KB
実行使用メモリ 9,712 KB
最終ジャッジ日時 2024-07-05 11:55:29
合計ジャッジ時間 11,939 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 10 ms
9,708 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 0 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 10 ms
9,712 KB
testcase_09 AC 9 ms
9,540 KB
testcase_10 AC 9 ms
9,600 KB
testcase_11 AC 1 ms
5,376 KB
testcase_12 AC 1 ms
5,376 KB
testcase_13 AC 7 ms
7,604 KB
testcase_14 AC 10 ms
9,660 KB
testcase_15 AC 1 ms
5,376 KB
testcase_16 AC 1 ms
5,376 KB
testcase_17 AC 10 ms
9,684 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 1 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
    ($($r:tt)*) => {
        let stdin = std::io::stdin();
        let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
        let mut next = move || -> String{
            bytes.by_ref().map(|r|r.unwrap() as char)
                .skip_while(|c|c.is_whitespace())
                .take_while(|c|!c.is_whitespace())
                .collect()
        };
        input_inner!{next, $($r)*}
    };
}

macro_rules! input_inner {
    ($next:expr) => {};
    ($next:expr,) => {};
    ($next:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($next, $t);
        input_inner!{$next $($r)*}
    };
}

macro_rules! read_value {
    ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}

/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
    use std::ops::*;
    pub trait Mod: Copy { fn m() -> i64; }
    #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
    pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
    impl<M: Mod> ModInt<M> {
        // x >= 0
        pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
        fn new_internal(x: i64) -> Self {
            ModInt { x: x, phantom: ::std::marker::PhantomData }
        }
        pub fn pow(self, mut e: i64) -> Self {
            debug_assert!(e >= 0);
            let mut sum = ModInt::new_internal(1);
            let mut cur = self;
            while e > 0 {
                if e % 2 != 0 { sum *= cur; }
                cur *= cur;
                e /= 2;
            }
            sum
        }
        #[allow(dead_code)]
        pub fn inv(self) -> Self { self.pow(M::m() - 2) }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
        type Output = Self;
        fn add(self, other: T) -> Self {
            let other = other.into();
            let mut sum = self.x + other.x;
            if sum >= M::m() { sum -= M::m(); }
            ModInt::new_internal(sum)
        }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
        type Output = Self;
        fn sub(self, other: T) -> Self {
            let other = other.into();
            let mut sum = self.x - other.x;
            if sum < 0 { sum += M::m(); }
            ModInt::new_internal(sum)
        }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
        type Output = Self;
        fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
    }
    impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
        fn add_assign(&mut self, other: T) { *self = *self + other; }
    }
    impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
        fn sub_assign(&mut self, other: T) { *self = *self - other; }
    }
    impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
        fn mul_assign(&mut self, other: T) { *self = *self * other; }
    }
    impl<M: Mod> Neg for ModInt<M> {
        type Output = Self;
        fn neg(self) -> Self { ModInt::new(0) - self }
    }
    impl<M> ::std::fmt::Display for ModInt<M> {
        fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
            self.x.fmt(f)
        }
    }
    impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
        fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
            let (mut a, mut b, _) = red(self.x, M::m());
            if b < 0 {
                a = -a;
                b = -b;
            }
            write!(f, "{}/{}", a, b)
        }
    }
    impl<M: Mod> From<i64> for ModInt<M> {
        fn from(x: i64) -> Self { Self::new(x) }
    }
    // Finds the simplest fraction x/y congruent to r mod p.
    // The return value (x, y, z) satisfies x = y * r + z * p.
    fn red(r: i64, p: i64) -> (i64, i64, i64) {
        if r.abs() <= 10000 {
            return (r, 1, 0);
        }
        let mut nxt_r = p % r;
        let mut q = p / r;
        if 2 * nxt_r >= r {
            nxt_r -= r;
            q += 1;
        }
        if 2 * nxt_r <= -r {
            nxt_r += r;
            q -= 1;
        }
        let (x, z, y) = red(nxt_r, r);
        (x, y - q * z, z)
    }
} // mod mod_int

macro_rules! define_mod {
    ($struct_name: ident, $modulo: expr) => {
        #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
        struct $struct_name {}
        impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
    }
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;

// Depends on MInt.rs
fn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) {
    let mut fac = vec![MInt::new(1); w];
    let mut invfac = vec![0.into(); w];
    for i in 1..w {
        fac[i] = fac[i - 1] * i as i64;
    }
    invfac[w - 1] = fac[w - 1].inv();
    for i in (0..w - 1).rev() {
        invfac[i] = invfac[i + 1] * (i as i64 + 1);
    }
    (fac, invfac)
}

// Solved with hint
fn main() {
    input!(n: usize, m: usize, k: usize);
    // (#left, #right, #edges, #redundant edges, coef (if endpoints are fixed, how many different graphs exist?))
    let gad = vec![
        (1, 2, 2, 1, 1),
        (2, 1, 2, 1, 1),
        (1, 3, 3, 2, 1),
        (3, 1, 3, 2, 1),
        (2, 2, 3, 1, 4),
        (2, 2, 4, 2, 1),
        (2, 3, 4, 2, 12),
        (3, 2, 4, 2, 12),
        (3, 3, 5, 2, 72),
    ];
    let (fac, invfac) = fact_init(max(n, m) + 10);
    let u = gad.len();
    let mut tot = MInt::new(0);
    let inv2 = MInt::new(2).inv();
    for i in 0..u {
        let (a, b, e, r, coef) = gad[i];
        if k < e { continue; }
        if r == 2 {
            let rem = k - e;
            if n >= a + rem && m >= b + rem {
                tot += fac[n] * invfac[a] * invfac[rem] * invfac[n - a - rem]
                    * fac[m] * invfac[b] * invfac[m - b - rem] * coef;
            }
        } else {
            for j in 0..u {
                let (a2, b2, e2, r2, coef2) = gad[j];
                if r2 != 1 { continue; }
                if k < e + e2 { continue; }
                let rem = k - e - e2;
                if n < a + a2 + rem || m < b + b2 + rem { continue; }
                tot += fac[n] * invfac[a] * invfac[a2]
                    * invfac[n - a - a2 - rem] * invfac[rem]
                    * fac[m] * invfac[b] * invfac[b2] * invfac[m - b - b2 - rem]
                    * inv2 * coef * coef2;
            }
        }
    }
    println!("{}", tot);
}
0