結果
| 問題 |
No.1689 Set Cards
|
| コンテスト | |
| ユーザー |
tanimani364
|
| 提出日時 | 2021-09-25 10:36:33 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 45 ms / 2,000 ms |
| コード長 | 4,219 bytes |
| コンパイル時間 | 2,225 ms |
| コンパイル使用メモリ | 201,520 KB |
| 最終ジャッジ日時 | 2025-01-24 18:05:15 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 23 |
ソースコード
#include <bits/stdc++.h>
//#include<boost/multiprecision/cpp_int.hpp>
//#include<boost/multiprecision/cpp_dec_float.hpp>
// #include <atcoder/all>
using namespace std;
#define rep(i, a) for (int i = (int)0; i < (int)a; ++i)
#define repl(i, a) for (long long i = (long long)0; i < (long long)a; ++i)
#define rrep(i, a) for (int i = (int)a; i > -1; --i)
#define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i)
#define REPL(i, a, b) for (long long i = (long long)a; i < (long long)b; ++i)
#define RREP(i, a, b) for (int i = (int)a; i > b; --i)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define popcount __builtin_popcount
#define popcountll __builtin_popcountll
#define fi first
#define se second
using ll = long long;
constexpr ll mod = 1e9 + 7;
constexpr ll mod_998244353 = 998244353;
constexpr ll INF = 1LL << 60;
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
//using lll=boost::multiprecision::cpp_int;
// using Double=boost::multiprecision::number<boost::multiprecision::cpp_dec_float<128>>;//仮数部が1024桁
template <class T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
ll mypow(ll x, ll n, const ll &p = -1)
{ // x^nをmodで割った余り
if (p != -1)
{
x = (x % p + p) % p;
}
ll ret = 1;
while (n > 0)
{
if (n & 1)
{
if (p != -1)
ret = (ret * x) % p;
else
ret *= x;
}
if (p != -1)
x = (x * x) % p;
else
x *= x;
n >>= 1;
}
return ret;
}
struct myrand{
random_device seed;
mt19937 mt;
myrand():mt(seed()){}
int operator()(int a,int b){//[a,b)
uniform_int_distribution<int>dist(a,b-1);
return dist(mt);
}
};
// using namespace atcoder;
//------------------------
//------------------------
//------------------------
//------------------------
//------------------------
template<int mod>
struct Modint{
int x;
Modint():x(0){}
Modint(int64_t y):x((y%mod+mod)%mod){}
Modint &operator+=(const Modint &p){
if((x+=p.x)>=mod)
x -= mod;
return *this;
}
Modint &operator-=(const Modint &p){
if((x+=mod-p.x)>=mod)
x -= mod;
return *this;
}
Modint &operator*=(const Modint &p){
x = (1LL * x * p.x) % mod;
return *this;
}
Modint &operator/=(const Modint &p){
*this *= p.inverse();
return *this;
}
Modint operator-() const { return Modint(-x); }
Modint operator+(const Modint &p) const{
return Modint(*this) += p;
}
Modint operator-(const Modint &p) const{
return Modint(*this) -= p;
}
Modint operator*(const Modint &p) const{
return Modint(*this) *= p;
}
Modint operator/(const Modint &p) const{
return Modint(*this) /= p;
}
bool operator==(const Modint &p) const { return x == p.x; }
bool operator!=(const Modint &p) const{return x != p.x;}
Modint inverse() const{//非再帰拡張ユークリッド
int a = x, b = mod, u = 1, v = 0;
while(b>0){
int t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return Modint(u);
}
Modint pow(int64_t n) const{//繰り返し二乗法
Modint ret(1), mul(x);
while(n>0){
if(n&1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os,const Modint &p){
return os << p.x;
}
};
using modint = Modint<mod>;
using modint2= Modint<mod_998244353>;
void solve()
{
int n;
cin>>n;
vector<vector<modint2>>dp(n+1,vector<modint2>(1<<12));
dp[0][0]=1;
rep(i,n){
int k;
cin>>k;
vector<bool>used(12);
rep(j,k){
int c;
cin>>c;
c--;
used[c]=true;
}
rep(bit,1<<12){
dp[i+1][bit]+=dp[i][bit];
int nbit=bit;
rep(j,12){
if(used[j])continue;
nbit|=1<<j;
}
dp[i+1][nbit]+=dp[i][bit];
}
}
modint2 ans=dp[n][(1<<12)-1];
cout<<ans<<"\n";
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
solve();
return 0;
}
tanimani364