結果
| 問題 |
No.1691 Badugi
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-09-26 20:22:13 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,536 bytes |
| コンパイル時間 | 360 ms |
| コンパイル使用メモリ | 81,920 KB |
| 実行使用メモリ | 92,672 KB |
| 最終ジャッジ日時 | 2024-07-05 16:57:49 |
| 合計ジャッジ時間 | 4,284 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 3 |
| other | WA * 17 |
ソースコード
import sys
read=sys.stdin.buffer.read;readline=sys.stdin.buffer.readline;input=lambda:sys.stdin.readline().rstrip()
import bisect,string,math,time,functools,random,fractions
st=time.time()
from bisect import*
from heapq import heappush,heappop,heapify
from collections import deque,defaultdict,Counter
from itertools import permutations,combinations,groupby
rep=range;R=range
def I():return int(input())
def LI():return [int(i) for i in input().split()]
def LI_():return [int(i)-1 for i in input().split()]
def S_():return input()
def IS():return input().split()
def LS():return [i for i in input().split()]
def NI(n):return [int(input()) for i in range(n)]
def NI_(n):return [int(input())-1 for i in range(n)]
def NLI(n):return [[int(i) for i in input().split()] for i in range(n)]
def NLI_(n):return [[int(i)-1 for i in input().split()] for i in range(n)]
def StoLI():return [ord(i)-97 for i in input()]
def ItoS(n):return chr(n+97)
def LtoS(ls):return ''.join([chr(i+97) for i in ls])
def RLI(n=8,a=1,b=10):return [random.randint(a,b)for i in range(n)]
def RI(a=1,b=10):return random.randint(a,b)
def INP():
N=8
n=random.randint(2,N)
n=6
a=[(random.randint(1,9),random.randint(1,9)) for i in range(n)]
#A=[random.randint(1,n) for i in range(m)]
return a
def Rtest(T):
case,err=0,0
for i in range(T):
inp=INP()
a1=naive(inp)
a2=solve(inp)
if a1!=a2:
print(inp)
print('naive',a1)
print('solve',a2)
err+=1
case+=1
print('Tested',case,'case with',err,'errors')
def GI(V,E,ls=None,Directed=False,index=1):
org_inp=[];g=[[] for i in range(V)]
FromStdin=True if ls==None else False
for i in range(E):
if FromStdin:
inp=LI()
org_inp.append(inp)
else:
inp=ls[i]
if len(inp)==2:a,b=inp;c=1
else:a,b,c=inp
if index==1:a-=1;b-=1
aa=(a,c);bb=(b,c);g[a].append(bb)
if not Directed:g[b].append(aa)
return g,org_inp
def GGI(h,w,search=None,replacement_of_found='.',mp_def={'#':1,'.':0},boundary=1):
#h,w,g,sg=GGI(h,w,search=['S','G'],replacement_of_found='.',mp_def={'#':1,'.':0},boundary=1) # sample usage
mp=[boundary]*(w+2);found={}
for i in R(h):
s=input()
for char in search:
if char in s:
found[char]=((i+1)*(w+2)+s.index(char)+1)
mp_def[char]=mp_def[replacement_of_found]
mp+=[boundary]+[mp_def[j] for j in s]+[boundary]
mp+=[boundary]*(w+2)
return h+2,w+2,mp,found
def TI(n):return GI(n,n-1)
def accum(ls):
rt=[0]
for i in ls:rt+=[rt[-1]+i]
return rt
def bit_combination(n,base=2):
rt=[]
for tb in R(base**n):s=[tb//(base**bt)%base for bt in R(n)];rt+=[s]
return rt
def gcd(x,y):
if y==0:return x
if x%y==0:return y
while x%y!=0:x,y=y,x%y
return y
def YN(x):print(['NO','YES'][x])
def Yn(x):print(['No','Yes'][x])
def show(*inp,end='\n'):
if show_flg:print(*inp,end=end)
mo=10**9+7
#mo=998244353
inf=float('inf')
FourNb=[(-1,0),(1,0),(0,1),(0,-1)];EightNb=[(-1,0),(1,0),(0,1),(0,-1),(1,1),(-1,-1),(1,-1),(-1,1)];compas=dict(zip('WENS',FourNb));cursol=dict(zip('LRUD',FourNb))
alp=[chr(ord('a')+i)for i in range(26)]
#sys.setrecursionlimit(10**7)
########################################################################################################################################################################
# Verified by
# https://yukicoder.me/problems/no/979
# https://atcoder.jp/contests/abc152/tasks/abc152_e
## return prime factors of N as dictionary {prime p:power of p}
## within 2 sec for N = 2*10**20+7
def primeFactor(N):
i,n=2,N
ret={}
d,sq=2,99
while i<=sq:
k=0
while n%i==0:
n,k,ret[i]=n//i,k+1,k+1
if k>0 or i==97:
sq=int(n**(1/2)+0.5)
if i<4:
i=i*2-1
else:
i,d=i+d,d^6
if n>1:
ret[n]=1
return ret
## return divisors of n as list
def divisors(n):
div=[1]
for i,j in primeFactor(n).items():
div=[(i**k)*d for d in div for k in range(j+1)]
return div
## return the array s such that s[q] = the minimum prime factor of q
def sieve(x):
s=[i for i in range(x+1)]
p=2
while p*p<=x:
if s[p]==p:
for q in range(2*p,x+1,p):
if s[q]==q:
s[q]=p
p+=1
return s
## return the list of prime numbers in [2,N], using eratosthenes sieve
## around 800 ms for N = 10**6 by PyPy3 (7.3.0) @ AtCoder
def PrimeNumSet(N):
M=int(N**0.5)
seachList=[i for i in range(2,N+1)]
primes=[]
while seachList:
if seachList[0]>M:
break
primes.append(seachList[0])
tmp=seachList[0]
seachList=[i for i in seachList if i%tmp!=0]
return primes+seachList
## retrun LCM of numbers in list b
## within 2sec for no of B = 10*5 and Bi < 10**6
def LCM(b,mo=10**9+7):
prs=PrimeNumSet(max(b))
M=dict(zip(prs,[0]*len(prs)))
for i in b:
dc=primeFactor(i)
for j,k in dc.items():
M[j]=max(M[j],k)
r=1
for j,k in M.items():
if k!=0:
r*=pow(j,k,mo)
r%=mo
return r
## return (a,b,gcd(x,y)) s.t. a*x+b*y=gcd(x,y)
def extgcd(x,y):
if y==0:
return 1,0
r0,r1,s0,s1 = x,y,1,0
while r1!= 0:
r0,r1,s0,s1=r1,r0%r1,s1,s0-r0//r1*s1
return s0,(r0-s0*x)//y,x*s0+y*(r0-s0*x)//y
## return x,LCM(mods) s.t. x = rem_i (mod_i), x = -1 if such x doesn't exist
## verified by ABC193E
## https://atcoder.jp/contests/abc193/tasks/abc193_e
def crt(rems,mods):
n=len(rems)
if n!=len(mods):
return NotImplemented
x,d=0,1
for r,m in zip(rems,mods):
a,b,g=extgcd(d,m)
x,d=(m*b*x+d*a*r)//g,d*(m//g)
x%=d
for r,m in zip(rems,mods):
if r!=x%m:
return -1,d
return x,d
## returns the maximum integer rt s.t. rt*rt<=x
## verified by ABC191D
## https://atcoder.jp/contests/abc191/tasks/abc191_d
def intsqrt(x):
if x<0:
return NotImplemented
rt=int(x**0.5)-1
while (rt+1)**2<=x:
rt+=1
return rt
show_flg=False
show_flg=True
n,m,k=LI()
mo=998244353
a=1
x=n*m
t=n
u=m
f=1
for i in range(k-2):
f*=i+1
f%=mo
a*=x
a%=mo
x-=t+u+1
t-=1
u-=1
print(a*pow(f,mo-2,mo)%mo)
s=(k-2)*n+(k-2)*m-(k-2)**2
a*=(s-k+2)*(s-k+2-1)
a%=mo
f*=(k+1-2)*(k+2-2)
f%=mo
print(a*pow(f,mo-2,mo)%mo)