結果
問題 | No.886 Direct |
ユーザー |
![]() |
提出日時 | 2021-09-30 09:51:42 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 3,697 ms / 4,000 ms |
コード長 | 4,749 bytes |
コンパイル時間 | 247 ms |
コンパイル使用メモリ | 82,428 KB |
実行使用メモリ | 296,728 KB |
最終ジャッジ日時 | 2024-07-17 13:10:03 |
合計ジャッジ時間 | 40,310 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 32 |
ソースコード
import mathfrom collections import defaultdictclass Prime:def __init__(self,N):assert N<=10**8self.smallest_prime_factor=[None]*(N+1)for i in range(2,N+1,2):self.smallest_prime_factor[i]=2n=int(N**.5)+1for p in range(3,n,2):if self.smallest_prime_factor[p]==None:self.smallest_prime_factor[p]=pfor i in range(p**2,N+1,2*p):if self.smallest_prime_factor[i]==None:self.smallest_prime_factor[i]=pfor p in range(n,N+1):if self.smallest_prime_factor[p]==None:self.smallest_prime_factor[p]=pself.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]def Factorize(self,N):assert N>=1factorize=defaultdict(int)if N<=len(self.smallest_prime_factor)-1:while N!=1:factorize[self.smallest_prime_factor[N]]+=1N//=self.smallest_prime_factor[N]else:for p in self.primes:while N%p==0:N//=pfactorize[p]+=1if N<p*p:if N!=1:factorize[N]+=1breakif N<=len(self.smallest_prime_factor)-1:while N!=1:factorize[self.smallest_prime_factor[N]]+=1N//=self.smallest_prime_factor[N]breakelse:if N!=1:factorize[N]+=1return factorizedef Divisors(self,N):assert N>0divisors=[1]for p,e in self.Factorize(N).items():A=[1]for _ in range(e):A.append(A[-1]*p)divisors=[i*j for i in divisors for j in A]return divisorsdef Is_Prime(self,N):return N==self.smallest_prime_factor[N]def Totient(self,N):for p in self.Factorize(N).keys():N*=p-1N//=preturn Ndef Mebius(self,N):fact=self.Factorize(N)for e in fact.values():if e>=2:return 0else:if len(fact)%2==0:return 1else:return -1def Extended_Euclid(n,m):stack=[]while m:stack.append((n,m))n,m=m,n%mif n>=0:x,y=1,0else:x,y=-1,0for i in range(len(stack)-1,-1,-1):n,m=stack[i]x,y=y,x-(n//m)*yreturn x,yclass MOD:def __init__(self,p,e=1):self.p=pself.e=eself.mod=self.p**self.edef Pow(self,a,n):a%=self.modif n>=0:return pow(a,n,self.mod)else:assert math.gcd(a,self.mod)==1x=Extended_Euclid(a,self.mod)[0]return pow(x,-n,self.mod)def Build_Fact(self,N):assert N>=0self.factorial=[1]self.cnt=[0]*(N+1)for i in range(1,N+1):ii=iself.cnt[i]=self.cnt[i-1]while ii%self.p==0:ii//=self.pself.cnt[i]+=1self.factorial.append((self.factorial[-1]*ii)%self.mod)self.factorial_inve=[None]*(N+1)self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)for i in range(N-1,-1,-1):ii=i+1while ii%self.p==0:ii//=self.pself.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.moddef Fact(self,N):if N<0:return 0return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.moddef Fact_Inve(self,N):if self.cnt[N]:return Nonereturn self.factorial_inve[N]def Comb(self,N,K,divisible_count=False):if K<0 or K>N:return 0retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.modcnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]if divisible_count:return retu,cntelse:retu*=pow(self.p,cnt,self.mod)retu%=self.modreturn retuH,W=map(int,input().split())cnt=[0]*(max(H,W)+1)mod=10**9+7MD=MOD(mod)MD.Build_Fact(max(H,W)+1)P=Prime(max(H,W)+1)for g in range(1,max(H,W)+1):n_H,c_H=divmod(H,g)n_W,c_W=divmod(W,g)cnt[g]=((MD.Comb(n_H,2)*(g-c_H)+MD.Comb(n_H+1,2)*c_H)*(MD.Comb(n_W,2)*(g-c_W)+MD.Comb(n_W+1,2)*c_W)*2%mod)cnt[g]+=H*(MD.Comb(n_W,2)*(g-c_W)+MD.Comb(n_W+1,2)*c_W)+W*(MD.Comb(n_H,2)*(g-c_H)+MD.Comb(n_H+1,2)*c_H)ans=0for g in range(1,max(H,W)+1):ans+=P.Mebius(g)*cnt[g]ans%=modprint(ans)