็ตๆ
ๅ้ก | No.1762 ๐๐๐ฒ |
ใฆใผใถใผ | PCTprobability |
ๆๅบๆฅๆ | 2021-10-06 10:37:12 |
่จ่ช | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
็ตๆ |
AC
|
ๅฎ่กๆ้ | 261 ms / 4,000 ms |
ใณใผใ้ท | 16,378 bytes |
ใณใณใใคใซๆ้ | 5,525 ms |
ใณใณใใคใซไฝฟ็จใกใขใช | 285,256 KB |
ๅฎ่กไฝฟ็จใกใขใช | 33,044 KB |
ๆ็ตใธใฃใใธๆฅๆ | 2025-01-03 12:29:45 |
ๅ่จใธใฃใใธๆ้ | 11,816 ms |
ใธใฃใใธใตใผใใผID ๏ผๅ่ๆ ๅ ฑ๏ผ |
judge3 / judge5 |
๏ผ่ฆใญใฐใคใณ๏ผ
ใในใใฑใผใน
ใในใใฑใผใน่กจ็คบๅ ฅๅ | ็ตๆ | ๅฎ่กๆ้ ๅฎ่กไฝฟ็จใกใขใช |
---|---|---|
testcase_00 | AC | 30 ms
26,948 KB |
testcase_01 | AC | 31 ms
27,128 KB |
testcase_02 | AC | 121 ms
29,188 KB |
testcase_03 | AC | 31 ms
27,060 KB |
testcase_04 | AC | 32 ms
27,180 KB |
testcase_05 | AC | 31 ms
26,984 KB |
testcase_06 | AC | 29 ms
26,984 KB |
testcase_07 | AC | 29 ms
27,252 KB |
testcase_08 | AC | 28 ms
26,908 KB |
testcase_09 | AC | 32 ms
27,076 KB |
testcase_10 | AC | 30 ms
27,076 KB |
testcase_11 | AC | 33 ms
27,084 KB |
testcase_12 | AC | 31 ms
27,140 KB |
testcase_13 | AC | 214 ms
31,688 KB |
testcase_14 | AC | 223 ms
31,612 KB |
testcase_15 | AC | 209 ms
32,052 KB |
testcase_16 | AC | 261 ms
31,788 KB |
testcase_17 | AC | 208 ms
31,764 KB |
testcase_18 | AC | 213 ms
32,156 KB |
testcase_19 | AC | 240 ms
32,028 KB |
testcase_20 | AC | 31 ms
27,072 KB |
testcase_21 | AC | 29 ms
26,864 KB |
testcase_22 | AC | 29 ms
27,088 KB |
testcase_23 | AC | 27 ms
27,104 KB |
testcase_24 | AC | 28 ms
27,076 KB |
testcase_25 | AC | 30 ms
27,080 KB |
testcase_26 | AC | 248 ms
32,048 KB |
testcase_27 | AC | 143 ms
29,548 KB |
testcase_28 | AC | 30 ms
26,968 KB |
testcase_29 | AC | 29 ms
26,952 KB |
testcase_30 | AC | 196 ms
31,828 KB |
testcase_31 | AC | 30 ms
26,868 KB |
testcase_32 | AC | 115 ms
29,928 KB |
testcase_33 | AC | 30 ms
27,004 KB |
testcase_34 | AC | 26 ms
27,016 KB |
testcase_35 | AC | 27 ms
26,900 KB |
testcase_36 | AC | 192 ms
31,940 KB |
testcase_37 | AC | 30 ms
26,916 KB |
testcase_38 | AC | 206 ms
33,044 KB |
testcase_39 | AC | 29 ms
27,008 KB |
testcase_40 | AC | 197 ms
32,400 KB |
testcase_41 | AC | 31 ms
27,116 KB |
testcase_42 | AC | 196 ms
32,124 KB |
testcase_43 | AC | 29 ms
27,104 KB |
testcase_44 | AC | 195 ms
32,072 KB |
testcase_45 | AC | 29 ms
26,892 KB |
testcase_46 | AC | 208 ms
32,536 KB |
testcase_47 | AC | 31 ms
27,036 KB |
testcase_48 | AC | 210 ms
32,968 KB |
testcase_49 | AC | 30 ms
26,956 KB |
ใฝใผในใณใผใ
#include <bits/stdc++.h>using namespace std;#if __has_include(<atcoder/all>)#include <atcoder/all>using namespace atcoder;#endifusing ll = long long;using ld = long double;using ull = unsigned long long;#define endl "\n"typedef pair<int, int> Pii;#define REP(i, n) for (int i = 0; i < (n); ++i)#define REP3(i, m, n) for (int i = (m); (i) < int(n); ++ (i))#define FOR(i,a,b) for(ll i=a;i<=(ll)(b);i++)#define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++)#define ALL(x) begin(x), end(x)#define rrep(i,a,b) for(int i=a;i>=b;i--)#define fore(i,a) for(auto &i:a)#define all(s) (s).begin(),(s).end()#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)#define drep(i, n) drep2(i, n, 0)#define rever(vec) reverse(vec.begin(), vec.end())#define sor(vec) sort(vec.begin(), vec.end())#define fi first#define se second#define pb push_back#define P pair<ll,ll>#define PQminll priority_queue<ll, vector<ll>, greater<ll>>#define PQmaxll priority_queue<ll,vector<ll>,less<ll>>#define PQminP priority_queue<P, vector<P>, greater<P>>#define PQmaxP priority_queue<P,vector<P>,less<P>>#define NP next_permutation//const ll mod = 1000000009;const ll mod = 998244353;//const ll mod = 1000000007;const ll inf = 4100000000000000000ll;const ld eps = ld(0.00000000001);//static const long double pi = 3.141592653589793;template<class T>void vcin(vector<T> &n){for(int i=0;i<int(n.size());i++) cin>>n[i];}template<class T,class K>void vcin(vector<T> &n,vector<K> &m){for(int i=0;i<int(n.size());i++) cin>>n[i]>>m[i];}template<class T>void vcout(vector<T> &n){for(int i=0;i<int(n.size());i++){cout<<n[i]<<" ";}cout<<endl;}template<class T>void vcin(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cin>>n[i][j];}}}template<class T>void vcout(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cout<<n[i][j]<<" ";}cout<<endl;}cout<<endl;}void yes(bool a){cout<<(a?"yes":"no")<<endl;}void YES(bool a){cout<<(a?"YES":"NO")<<endl;}void Yes(bool a){cout<<(a?"Yes":"No")<<endl;}void possible(bool a){ cout<<(a?"possible":"impossible")<<endl; }void Possible(bool a){ cout<<(a?"Possible":"Impossible")<<endl; }void POSSIBLE(bool a){ cout<<(a?"POSSIBLE":"IMPOSSIBLE")<<endl; }template<class T>auto min(const T& a){ return *min_element(all(a)); }template<class T>auto max(const T& a){ return *max_element(all(a)); }template<class T,class F>void print(pair<T,F> a){cout<<a.fi<<" "<<a.se<<endl;}template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0;}template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0;}template<class T> void ifmin(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}}template<class T> void ifmax(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}}ll fastgcd(ll u,ll v){ll shl=0;while(u&&v&&u!=v){bool eu=!(u&1);bool ev=!(v&1);if(eu&&ev){++shl;u>>=1;v>>=1;}else if(eu&&!ev){u>>=1;}else if(!eu&&ev){v>>=1;}else if(u>=v){u=(u-v)>>1;}else{ll tmp=u;u=(v-u)>>1;v=tmp;}}return !u?v<<shl:u<<shl;}ll modPow(ll a, ll n, ll mod) { if(mod==1) return 0;ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1;} return ret; }vector<ll> divisor(ll x){ vector<ll> ans; for(ll i = 1; i * i <= x; i++){ if(x % i == 0) {ans.push_back(i); if(i*i!=x){ ans.push_back(x / ans[i]);}}}sor(ans); return ans; }ll pop(ll x){return __builtin_popcountll(x);}ll poplong(ll x){ll y=-1;while(x){x/=2;y++;}return y;}P hyou(P a){ll x=fastgcd(abs(a.fi),abs(a.se));a.fi/=x;a.se/=x;if(a.se<0){a.fi*=-1;a.se*=-1;}return a;}P Pplus(P a,P b){ return hyou({a.fi*b.se+b.fi*a.se,a.se*b.se});}P Ptimes(P a,ll b){ return hyou({a.fi*b,a.se});}P Ptimes(P a,P b){ return hyou({a.fi*b.fi,a.se*b.se});}P Pminus(P a,P b){ return hyou({a.fi*b.se-b.fi*a.se,a.se*b.se});}P Pgyaku(P a){ return hyou({a.se,a.fi});}void cincout(){ios::sync_with_stdio(false);std::cin.tie(nullptr);cout<< fixed << setprecision(15);}using mint = modint998244353;template<class T>vector<T> NTT(vector<T> a,vector<T> b){ll nmod=T::mod();int n=a.size();int m=b.size();vector<int> x1(n);vector<int> y1(m);for(int i=0;i<n;i++){ll tmp1,tmp2,tmp3;tmp1=a[i].val();x1[i]=tmp1;}for(int i=0;i<m;i++){ll tmp1,tmp2,tmp3;tmp1=b[i].val();y1[i]=tmp1;}auto z1=convolution<167772161>(x1,y1);auto z2=convolution<469762049>(x1,y1);auto z3=convolution<1224736769>(x1,y1);vector<T> res(n+m-1);ll m1=167772161;ll m2=469762049;ll m3=1224736769;ll m1m2=104391568;ll m1m2m3=721017874;ll mm12=m1*m2%nmod;for(int i=0;i<n+m-1;i++){int v1=(z2[i]-z1[i])*m1m2%m2;if(v1<0) v1+=m2;int v2=(z3[i]-(z1[i]+v1*m1)%m3)*m1m2m3%m3;if(v2<0) v2+=m3;res[i]=(z1[i]+v1*m1+v2*mm12);}return res;}enum Mode {FAST = 1,NAIVE = -1,};template <class T, Mode mode = FAST>struct FormalPowerSeries : std::vector<T> {using std::vector<T>::vector;using std::vector<T>::size;using std::vector<T>::resize;using F = FormalPowerSeries;F &operator+=(const F &g){for(int i=0;i<int(min((*this).size(),g.size()));i++){(*this)[i]+=g[i];}return *this;}F &operator+=(const T &t){assert(int((*this).size()));(*this)[0]+=t;return *this;}F &operator-=(const F &g) {for(int i=0;i<int(min((*this).size(),g.size()));i++){(*this)[i]-=g[i];}return *this;}F &operator-=(const T &t){assert(int((*this).size()));(*this)[0]-=t;return *this;}F &operator*=(const T &g) {for(int i=0;i<int((*this).size());i++){(*this)[i]*=g;}return *this;}F &operator/=(const T &g) {T div=g.inv();for(int i=0;i<int((*this).size());i++){(*this)[i]*=div;}return *this;}F &operator<<=(const int d) {int n=(*this).size();(*this).insert((*this).begin(),d,0);(*this).resize(n);return *this;}F &operator>>=(const int d) {int n=(*this).size();(*this).erase((*this).begin(),(*this).begin()+min(n, d));(*this).resize(n);return *this;}F &operator=(const std::vector<T> &v) {int n = (*this).size();for(int i = 0; i < n; ++i) (*this)[i] = v[i];return *this;}F operator-() const {F ret = *this;return ret * -1;}F &operator*=(const F &g) {if(mode==FAST) {int n=(*this).size();auto tmp=atcoder::convolution(*this,g);int k=tmp.size();(*this).resize(k);for(int i=0;i<k;++i){(*this)[i]=tmp[i];}return *this;}else{int n=(*this).size();auto tmp=NTT(*this,g);int k=tmp.size();(*this).resize(k);for(int i=0;i<k;++i){(*this)[i]=tmp[i];}return *this;}}F &operator/=(const F &g) {if(mode == FAST){int n = (*this).size();(*this) = atcoder::convolution(*this, g.inv());return *this;}else{int n = (*this).size();(*this) = NTT(*this, g.inv());return *this;}}F &operator%=(const F &g) { return *this-=*this/g*g; }F operator*(const T &g) const { return F(*this)*=g;}F operator-(const T &g) const { return F(*this)-=g;}F operator*(const F &g) const { return F(*this)*=g;}F operator-(const F &g) const { return F(*this)-=g;}F operator+(const F &g) const { return F(*this)+=g;}F operator/(const F &g) const { return F(*this)/=g;}F operator%(const F &g) const { return F(*this)%=g;}F operator<<(const int d) const { return F(*this)<<=d;}F operator>>(const int d) const { return F(*this)>>=d;}void onemul(const int d,const T c){int n=(*this).size();for(int i=n-d-1;i>=0;i--){(*this)[i+d]+=(*this)[i]*c;}}void onediv(const int d,const T c){int n=(*this).size();for(int i=0;i<n-d;i++){(*this)[i+d]-=(*this)[i]*c;}}T eval(const T &t) const {int n = (*this).size();T res = 0, tmp = 1;for(int i = 0; i < n; ++i){res += (*this)[i] * tmp, tmp *= t;}return res;}F inv(int deg = -1) const {int n = (*this).size();if(mode==FAST){if(deg == -1) deg = n;assert(deg > 0);F res{(*this)[0].inv()};while(int(res.size()) < deg) {int m = res.size();F f((*this).begin(), (*this).begin() + std::min(n, m * 2)), r(res);f.resize(m * 2), atcoder::internal::butterfly(f);r.resize(m * 2), atcoder::internal::butterfly(r);for(int i = 0; i < m * 2; ++i) f[i] *= r[i];atcoder::internal::butterfly_inv(f);f.erase(f.begin(), f.begin() + m);f.resize(m * 2), atcoder::internal::butterfly(f);for(int i = 0; i < m * 2; ++i) f[i] *= r[i];atcoder::internal::butterfly_inv(f);T iz = T(m * 2).inv();iz *= -iz;for(int i = 0; i < m; ++i) f[i] *= iz;res.insert(res.end(), f.begin(), f.begin() + m);}res.resize(deg);return res;}else{assert(n!=0&&(*this)[0]!=0);if(deg==-1) deg=n;assert(deg>0);F res{(*this)[0].inv()};while(res.size()<deg){int m=res.size();F f(begin(*this),begin(*this)+min(n,2*m));F r(res);f.resize(2*m);r.resize(2*m);vector<T> s=NTT(f,r);s.resize(2*m);for(int i=0;i<2*m;i++){s[i]=-s[i];}s[0]+=2;vector<T> g=NTT(s,r);g.resize(2*m);swap(res,g);}res.resize(n);return res;}}F &diff_inplace() {int n = (*this).size();for(int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i;(*this)[n - 1] = 0;return *this;}F diff() const { F(*this).diff_inplace();}F &integral_inplace() {int n = (*this).size(), mod = T::mod();std::vector<T> inv(n);{inv[1] = 1;for(int i = 2; i < n; ++i)inv[i] = T(mod) - inv[mod % i] * (mod / i);}for(int i = n - 2; i >= 0; --i) (*this)[i + 1] = (*this)[i] * inv[i + 1];(*this)[0] = 0;return *this;}F integral() const { return F(*this).integral_inplace(); }F &log_inplace() {int n = (*this).size();assert(n and (*this)[0] == 1);F f_inv = (*this).inv();(*this).diff_inplace();(*this) *= f_inv;(*this).integral_inplace();return *this;}F log() const { return F(*this).log_inplace(); }F &deriv_inplace() {int n = (*this).size();assert(n);for(int i = 2; i < n; ++i) (*this)[i] *= i;(*this).erase((*this).begin());(*this).push_back(0);return *this;}F deriv() const { return F(*this).deriv_inplace(); }F &exp_inplace() {int n = (*this).size();assert(n and (*this)[0] == 0);F g{1};(*this)[0] = 1;F h_drv((*this).deriv());for(int m = 1; m < n; m *= 2) {F f((*this).begin(), (*this).begin() + m);f.resize(2 * m), atcoder::internal::butterfly(f);auto mult_f = [&](F &p) {p.resize(2 * m);atcoder::internal::butterfly(p);for(int i = 0; i < 2 * m; ++i) p[i] *= f[i];atcoder::internal::butterfly_inv(p);p /= 2 * m;};if(m > 1) {F g_(g);g_.resize(2 * m), atcoder::internal::butterfly(g_);for(int i = 0; i < 2 * m; ++i) g_[i] *= g_[i] * f[i];atcoder::internal::butterfly_inv(g_);T iz = T(-2 * m).inv();g_ *= iz;g.insert(g.end(), g_.begin() + m / 2, g_.begin() + m);}F t((*this).begin(), (*this).begin() + m);t.deriv_inplace();{F r{h_drv.begin(), h_drv.begin() + m - 1};mult_f(r);for(int i = 0; i < m; ++i) t[i] -= r[i] + r[m + i];}t.insert(t.begin(), t.back());t.pop_back();t *= g;F v((*this).begin() + m, (*this).begin() + std::min(n, 2 * m));v.resize(m);t.insert(t.begin(), m - 1, 0);t.push_back(0);t.integral_inplace();for(int i = 0; i < m; ++i) v[i] -= t[m + i];mult_f(v);for(int i = 0; i < std::min(n - m, m); ++i)(*this)[m + i] = v[i];}return *this;}F exp() const { return F(*this).exp_inplace(); }F &pow_inplace(long long k) {int n = (*this).size(), l = 0;assert(k >= 0);if(!k){for(int i = 0; i < n; ++i) (*this)[i] = !i;return *this;}while(l < n and (*this)[l] == 0) ++l;if(l > (n - 1) / k or l == n) return *this = F(n);T c = (*this)[l];(*this).erase((*this).begin(), (*this).begin() + l);(*this) /= c;(*this).log_inplace();(*this).resize(n - l * k);(*this) *= k;(*this).exp_inplace();(*this) *= c.pow(k);(*this).insert((*this).begin(), l * k, 0);return *this;}F pow(const long long k) const { return F(*this).pow_inplace(); }void manymul(vector<pair<int, T>> g) {int n = (*this).size();auto [d, c] = g.front();if (d == 0) g.erase(g.begin());else c = 0;drep(i, n) {(*this)[i] *= c;for (auto &[j, b] : g) {if (j > i) break;(*this)[i] += (*this)[i-j] * b;}}}void manydiv(vector<pair<int, T>> g) {int n = (*this).size();auto [d, c] = g.front();assert(d == 0 && c != T(0));T ic = c.inv();g.erase(g.begin());rep(i, 0,n) {for (auto &[j, b] : g) {if (j > i) break;(*this)[i] -= (*this)[i-j] * b;}(*this)[i] *= ic;}}};template<class T>void GaussJordan(vector<vector<T>> &A,bool is_extended = false){ll m=A.size(),n=A[0].size();ll rank=0;for(int i=0;i<n;i++){if(is_extended&&i==n-1) break;ll p=-1;for(int j=rank;j<m;j++){if(A[j][i]!=T(0)){p=j;break;}}if(p==-1) continue;swap(A[p],A[rank]);auto k=A[rank][i];for(int i2=0;i2<n;i2++){A[rank][i2]/=k;}for(int j=0;j<m;j++){if(j!=rank&&A[j][i]!=T(0)){auto fac=A[j][i];for(int i2=0;i2<n;i2++){A[j][i2]-=A[rank][i2]*fac;}}}rank++;}}template<class T>void linear_equation(vector<vector<T>> a, vector<T> b, vector<T> &res) {ll m=a.size(),n=a[0].size();vector<vector<T>> M(m,vector<T>(n+1));for(int i=0;i<m;i++){for(int j=0;j<n;j++){M[i][j]=a[i][j];}M[i][n]=b[i];}GaussJordan(M,true);res.assign(n,0);for(int i=0;i<n;i++) res[i]=M[i][n];}template<class F>pair<F,F> Characteristic_equation(const F &a) {using T=typename F::value_type;ll n=a.size();ll p=n/2;ll u=p+(p+1);vector<vector<T>> f(u,vector<T>(u));f[0][0]=1;for(int i=1;i<=p;i++){f[i][i-1]=-1;}for(int i=p;i<u;i++){ll t=0;for(int j=1+i-p;j<u;j++){f[j][i]=a[t];t++;}}vector<T> b(u);b[0]=1;vector<T> res(u);linear_equation(f,b,res);F X(p),Y(p+1);for(int i=0;i<p;i++) X[i]=res[i];for(int j=p;j<res.size();j++) Y[j-p]=res[j];return {X,Y};}template <class T, Mode mode>T getK(FormalPowerSeries<T, mode> p, FormalPowerSeries<T, mode> q,ll k){if(k<0) return T(0);ll d=q.size();while(k){auto qn=q;for(int i=1;i<d;i+=2) qn[i]*=-1;p.resize(2*d);q.resize(2*d);p*=qn;q*=qn;for(int i=0;i<d-1;i++){p[i]=p[(i<<1)|(k&1)];}for(int i=0;i<d;i++){q[i]=q[(i<<1)];}p.resize(d-1);q.resize(d);k/=2;}return p[0];}/*using mint = modint1000000007;using fps = FormalPowerSeries<atcoder::modint1000000007,NAIVE>;*/using mint = modint998244353;using fps = FormalPowerSeries<atcoder::modint998244353,FAST>;/*fps TaylorShift(fps f,mint c){for(int i=0;i<n;i++){f[i]*=fac[i];}fps g(n);for(int i=0;i<n;i++){g[n-i-1]=c.pow(i)*finv[i];}g*=f;fps res(n);for(int i=0;i<n;i++){res[i]=g[n+i-1]*finv[i];}return res;}*/constexpr ll MAX = 1000000;ll fac[MAX],finv[MAX],inv[MAX];void COMinit(){fac[0]=fac[1]=1;finv[0]=finv[1]=1;inv[1]=1;for(int i=2;i<MAX;i++){fac[i]=fac[i-1]*i%mod;inv[i]=mod-inv[mod%i]*(mod/i)%mod;finv[i]=finv[i-1]*inv[i]%mod;}}ll binom(ll n,ll k){if(n<k) return 0;if(n<0||k<0) return 0;return fac[n]*(finv[k]*finv[n-k]%mod)%mod;}ll HOM(ll n,ll k){if(n+k-1>=n-1&&n-1>=0){return binom(n+k-1,n-1);}else{return 0;}}int main() {cincout();COMinit();ll n;cin>>n;ll p;cin>>p;if(n%4!=1){cout<<0<<endl;return 0;}ll m=(n/4);mint ans=1;if(m-1<p*7){cout<<0<<endl;return 0;}for(int i=1;i<=n;i++) ans*=i;for(int i=1;i<=m;i++) ans/=i;ans/=mint(6).pow(m);ans/=n-m;ans*=binom(3*m+1,p);fps f(m),g(m);if(m-1>=7) f[7]=finv[7];for(int i=0;i<min(7ll,m);i++) g[i]=finv[i];f=f.pow_inplace(p);g=g.pow_inplace(3*m+1-p);f*=g;ans*=f[m-1];for(int i=1;i<=m-1;i++) ans*=i;cout<<ans.val()<<endl;}