็ตๆžœ

ๅ•้กŒ No.1762 ๐Ÿ™๐Ÿ„๐ŸŒฒ
ใƒฆใƒผใ‚ถใƒผ PCTprobabilityPCTprobability
ๆๅ‡บๆ—ฅๆ™‚ 2021-10-06 10:37:12
่จ€่ชž C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
็ตๆžœ
AC  
ๅฎŸ่กŒๆ™‚้–“ 261 ms / 4,000 ms
ใ‚ณใƒผใƒ‰้•ท 16,378 bytes
ใ‚ณใƒณใƒ‘ใ‚คใƒซๆ™‚้–“ 5,525 ms
ใ‚ณใƒณใƒ‘ใ‚คใƒซไฝฟ็”จใƒกใƒขใƒช 285,256 KB
ๅฎŸ่กŒไฝฟ็”จใƒกใƒขใƒช 33,044 KB
ๆœ€็ต‚ใ‚ธใƒฃใƒƒใ‚ธๆ—ฅๆ™‚ 2025-01-03 12:29:45
ๅˆ่จˆใ‚ธใƒฃใƒƒใ‚ธๆ™‚้–“ 11,816 ms
ใ‚ธใƒฃใƒƒใ‚ธใ‚ตใƒผใƒใƒผID
๏ผˆๅ‚่€ƒๆƒ…ๅ ฑ๏ผ‰
judge3 / judge5
ใ“ใฎใ‚ณใƒผใƒ‰ใธใฎใƒใƒฃใƒฌใƒณใ‚ธ
๏ผˆ่ฆใƒญใ‚ฐใ‚คใƒณ๏ผ‰

ใƒ†ใ‚นใƒˆใ‚ฑใƒผใ‚น

ใƒ†ใ‚นใƒˆใ‚ฑใƒผใ‚น่กจ็คบ
ๅ…ฅๅŠ› ็ตๆžœ ๅฎŸ่กŒๆ™‚้–“
ๅฎŸ่กŒไฝฟ็”จใƒกใƒขใƒช
testcase_00 AC 30 ms
26,948 KB
testcase_01 AC 31 ms
27,128 KB
testcase_02 AC 121 ms
29,188 KB
testcase_03 AC 31 ms
27,060 KB
testcase_04 AC 32 ms
27,180 KB
testcase_05 AC 31 ms
26,984 KB
testcase_06 AC 29 ms
26,984 KB
testcase_07 AC 29 ms
27,252 KB
testcase_08 AC 28 ms
26,908 KB
testcase_09 AC 32 ms
27,076 KB
testcase_10 AC 30 ms
27,076 KB
testcase_11 AC 33 ms
27,084 KB
testcase_12 AC 31 ms
27,140 KB
testcase_13 AC 214 ms
31,688 KB
testcase_14 AC 223 ms
31,612 KB
testcase_15 AC 209 ms
32,052 KB
testcase_16 AC 261 ms
31,788 KB
testcase_17 AC 208 ms
31,764 KB
testcase_18 AC 213 ms
32,156 KB
testcase_19 AC 240 ms
32,028 KB
testcase_20 AC 31 ms
27,072 KB
testcase_21 AC 29 ms
26,864 KB
testcase_22 AC 29 ms
27,088 KB
testcase_23 AC 27 ms
27,104 KB
testcase_24 AC 28 ms
27,076 KB
testcase_25 AC 30 ms
27,080 KB
testcase_26 AC 248 ms
32,048 KB
testcase_27 AC 143 ms
29,548 KB
testcase_28 AC 30 ms
26,968 KB
testcase_29 AC 29 ms
26,952 KB
testcase_30 AC 196 ms
31,828 KB
testcase_31 AC 30 ms
26,868 KB
testcase_32 AC 115 ms
29,928 KB
testcase_33 AC 30 ms
27,004 KB
testcase_34 AC 26 ms
27,016 KB
testcase_35 AC 27 ms
26,900 KB
testcase_36 AC 192 ms
31,940 KB
testcase_37 AC 30 ms
26,916 KB
testcase_38 AC 206 ms
33,044 KB
testcase_39 AC 29 ms
27,008 KB
testcase_40 AC 197 ms
32,400 KB
testcase_41 AC 31 ms
27,116 KB
testcase_42 AC 196 ms
32,124 KB
testcase_43 AC 29 ms
27,104 KB
testcase_44 AC 195 ms
32,072 KB
testcase_45 AC 29 ms
26,892 KB
testcase_46 AC 208 ms
32,536 KB
testcase_47 AC 31 ms
27,036 KB
testcase_48 AC 210 ms
32,968 KB
testcase_49 AC 30 ms
26,956 KB
ๆจฉ้™ใŒใ‚ใ‚Œใฐไธ€ๆ‹ฌใƒ€ใ‚ฆใƒณใƒญใƒผใƒ‰ใŒใงใใพใ™

ใ‚ฝใƒผใ‚นใ‚ณใƒผใƒ‰

diff #
ใƒ—ใƒฌใ‚ผใƒณใƒ†ใƒผใ‚ทใƒงใƒณใƒขใƒผใƒ‰ใซใ™ใ‚‹

#include <bits/stdc++.h>
using namespace std;
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
using ll = long long;
using ld = long double;
using ull = unsigned long long;
#define endl "\n"
typedef pair<int, int> Pii;
#define REP(i, n) for (int i = 0; i < (n); ++i)
#define REP3(i, m, n) for (int i = (m); (i) < int(n); ++ (i))
#define FOR(i,a,b) for(ll i=a;i<=(ll)(b);i++)
#define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++)
#define ALL(x) begin(x), end(x)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(s) (s).begin(),(s).end()
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
#define rever(vec) reverse(vec.begin(), vec.end())
#define sor(vec) sort(vec.begin(), vec.end())
#define fi first
#define se second
#define pb push_back
#define P pair<ll,ll>
#define PQminll priority_queue<ll, vector<ll>, greater<ll>>
#define PQmaxll priority_queue<ll,vector<ll>,less<ll>>
#define PQminP priority_queue<P, vector<P>, greater<P>>
#define PQmaxP priority_queue<P,vector<P>,less<P>>
#define NP next_permutation
//const ll mod = 1000000009;
const ll mod = 998244353;
//const ll mod = 1000000007;
const ll inf = 4100000000000000000ll;
const ld eps = ld(0.00000000001);
//static const long double pi = 3.141592653589793;
template<class T>void vcin(vector<T> &n){for(int i=0;i<int(n.size());i++) cin>>n[i];}
template<class T,class K>void vcin(vector<T> &n,vector<K> &m){for(int i=0;i<int(n.size());i++) cin>>n[i]>>m[i];}
template<class T>void vcout(vector<T> &n){for(int i=0;i<int(n.size());i++){cout<<n[i]<<" ";}cout<<endl;}
template<class T>void vcin(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cin>>n[i][j];}}}
template<class T>void vcout(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cout<<n[i][j]<<" ";}cout<<endl
    ;}cout<<endl;}
void yes(bool a){cout<<(a?"yes":"no")<<endl;}
void YES(bool a){cout<<(a?"YES":"NO")<<endl;}
void Yes(bool a){cout<<(a?"Yes":"No")<<endl;}
void possible(bool a){ cout<<(a?"possible":"impossible")<<endl; }
void Possible(bool a){ cout<<(a?"Possible":"Impossible")<<endl; }
void POSSIBLE(bool a){ cout<<(a?"POSSIBLE":"IMPOSSIBLE")<<endl; }
template<class T>auto min(const T& a){ return *min_element(all(a)); }
template<class T>auto max(const T& a){ return *max_element(all(a)); }
template<class T,class F>void print(pair<T,F> a){cout<<a.fi<<" "<<a.se<<endl;}
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0;}
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0;}
template<class T> void ifmin(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}}
template<class T> void ifmax(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}}
ll fastgcd(ll u,ll v){ll shl=0;while(u&&v&&u!=v){bool eu=!(u&1);bool ev=!(v&1);if(eu&&ev){++shl;u>>=1;v>>=1;}else if(eu&&!ev){u>>=1;}else if(!eu&&ev
    ){v>>=1;}else if(u>=v){u=(u-v)>>1;}else{ll tmp=u;u=(v-u)>>1;v=tmp;}}return !u?v<<shl:u<<shl;}
ll modPow(ll a, ll n, ll mod) { if(mod==1) return 0;ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1;
    } return ret; }
vector<ll> divisor(ll x){ vector<ll> ans; for(ll i = 1; i * i <= x; i++){ if(x % i == 0) {ans.push_back(i); if(i*i!=x){ ans.push_back(x / ans[i]
    );}}}sor(ans); return ans; }
ll pop(ll x){return __builtin_popcountll(x);}
ll poplong(ll x){ll y=-1;while(x){x/=2;y++;}return y;}
P hyou(P a){ll x=fastgcd(abs(a.fi),abs(a.se));a.fi/=x;a.se/=x;if(a.se<0){a.fi*=-1;a.se*=-1;}return a;}
P Pplus(P a,P b){ return hyou({a.fi*b.se+b.fi*a.se,a.se*b.se});}
P Ptimes(P a,ll b){ return hyou({a.fi*b,a.se});}
P Ptimes(P a,P b){ return hyou({a.fi*b.fi,a.se*b.se});}
P Pminus(P a,P b){ return hyou({a.fi*b.se-b.fi*a.se,a.se*b.se});}
P Pgyaku(P a){ return hyou({a.se,a.fi});}
void cincout(){
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout<< fixed << setprecision(15);
}
using mint = modint998244353;
template<class T>
vector<T> NTT(vector<T> a,vector<T> b){
ll nmod=T::mod();
int n=a.size();
int m=b.size();
vector<int> x1(n);
vector<int> y1(m);
for(int i=0;i<n;i++){
ll tmp1,tmp2,tmp3;
tmp1=a[i].val();
x1[i]=tmp1;
}
for(int i=0;i<m;i++){
ll tmp1,tmp2,tmp3;
tmp1=b[i].val();
y1[i]=tmp1;
}
auto z1=convolution<167772161>(x1,y1);
auto z2=convolution<469762049>(x1,y1);
auto z3=convolution<1224736769>(x1,y1);
vector<T> res(n+m-1);
ll m1=167772161;
ll m2=469762049;
ll m3=1224736769;
ll m1m2=104391568;
ll m1m2m3=721017874;
ll mm12=m1*m2%nmod;
for(int i=0;i<n+m-1;i++){
int v1=(z2[i]-z1[i])*m1m2%m2;
if(v1<0) v1+=m2;
int v2=(z3[i]-(z1[i]+v1*m1)%m3)*m1m2m3%m3;
if(v2<0) v2+=m3;
res[i]=(z1[i]+v1*m1+v2*mm12);
}
return res;
}
enum Mode {
FAST = 1,
NAIVE = -1,
};
template <class T, Mode mode = FAST>
struct FormalPowerSeries : std::vector<T> {
using std::vector<T>::vector;
using std::vector<T>::size;
using std::vector<T>::resize;
using F = FormalPowerSeries;
F &operator+=(const F &g){
for(int i=0;i<int(min((*this).size(),g.size()));i++){
(*this)[i]+=g[i];
}
return *this;
}
F &operator+=(const T &t){
assert(int((*this).size()));
(*this)[0]+=t;
return *this;
}
F &operator-=(const F &g) {
for(int i=0;i<int(min((*this).size(),g.size()));i++){
(*this)[i]-=g[i];
}
return *this;
}
F &operator-=(const T &t){
assert(int((*this).size()));
(*this)[0]-=t;
return *this;
}
F &operator*=(const T &g) {
for(int i=0;i<int((*this).size());i++){
(*this)[i]*=g;
}
return *this;
}
F &operator/=(const T &g) {
T div=g.inv();
for(int i=0;i<int((*this).size());i++){
(*this)[i]*=div;
}
return *this;
}
F &operator<<=(const int d) {
int n=(*this).size();
(*this).insert((*this).begin(),d,0);
(*this).resize(n);
return *this;
}
F &operator>>=(const int d) {
int n=(*this).size();
(*this).erase((*this).begin(),(*this).begin()+min(n, d));
(*this).resize(n);
return *this;
}
F &operator=(const std::vector<T> &v) {
int n = (*this).size();
for(int i = 0; i < n; ++i) (*this)[i] = v[i];
return *this;
}
F operator-() const {
F ret = *this;
return ret * -1;
}
F &operator*=(const F &g) {
if(mode==FAST) {
int n=(*this).size();
auto tmp=atcoder::convolution(*this,g);
int k=tmp.size();
(*this).resize(k);
for(int i=0;i<k;++i){
(*this)[i]=tmp[i];
}
return *this;
}
else{
int n=(*this).size();
auto tmp=NTT(*this,g);
int k=tmp.size();
(*this).resize(k);
for(int i=0;i<k;++i){
(*this)[i]=tmp[i];
}
return *this;
}
}
F &operator/=(const F &g) {
if(mode == FAST){
int n = (*this).size();
(*this) = atcoder::convolution(*this, g.inv());
return *this;
}
else{
int n = (*this).size();
(*this) = NTT(*this, g.inv());
return *this;
}
}
F &operator%=(const F &g) { return *this-=*this/g*g; }
F operator*(const T &g) const { return F(*this)*=g;}
F operator-(const T &g) const { return F(*this)-=g;}
F operator*(const F &g) const { return F(*this)*=g;}
F operator-(const F &g) const { return F(*this)-=g;}
F operator+(const F &g) const { return F(*this)+=g;}
F operator/(const F &g) const { return F(*this)/=g;}
F operator%(const F &g) const { return F(*this)%=g;}
F operator<<(const int d) const { return F(*this)<<=d;}
F operator>>(const int d) const { return F(*this)>>=d;}
void onemul(const int d,const T c){
int n=(*this).size();
for(int i=n-d-1;i>=0;i--){
(*this)[i+d]+=(*this)[i]*c;
}
}
void onediv(const int d,const T c){
int n=(*this).size();
for(int i=0;i<n-d;i++){
(*this)[i+d]-=(*this)[i]*c;
}
}
T eval(const T &t) const {
int n = (*this).size();
T res = 0, tmp = 1;
for(int i = 0; i < n; ++i){
res += (*this)[i] * tmp, tmp *= t;
}
return res;
}
F inv(int deg = -1) const {
int n = (*this).size();
if(mode==FAST){
if(deg == -1) deg = n;
assert(deg > 0);
F res{(*this)[0].inv()};
while(int(res.size()) < deg) {
int m = res.size();
F f((*this).begin(), (*this).begin() + std::min(n, m * 2)), r(res);
f.resize(m * 2), atcoder::internal::butterfly(f);
r.resize(m * 2), atcoder::internal::butterfly(r);
for(int i = 0; i < m * 2; ++i) f[i] *= r[i];
atcoder::internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(m * 2), atcoder::internal::butterfly(f);
for(int i = 0; i < m * 2; ++i) f[i] *= r[i];
atcoder::internal::butterfly_inv(f);
T iz = T(m * 2).inv();
iz *= -iz;
for(int i = 0; i < m; ++i) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
res.resize(deg);
return res;
}
else{
assert(n!=0&&(*this)[0]!=0);
if(deg==-1) deg=n;
assert(deg>0);
F res{(*this)[0].inv()};
while(res.size()<deg){
int m=res.size();
F f(begin(*this),begin(*this)+min(n,2*m));
F r(res);
f.resize(2*m);
r.resize(2*m);
vector<T> s=NTT(f,r);
s.resize(2*m);
for(int i=0;i<2*m;i++){
s[i]=-s[i];
}
s[0]+=2;
vector<T> g=NTT(s,r);
g.resize(2*m);
swap(res,g);
}
res.resize(n);
return res;
}
}
F &diff_inplace() {
int n = (*this).size();
for(int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i;
(*this)[n - 1] = 0;
return *this;
}
F diff() const { F(*this).diff_inplace();}
F &integral_inplace() {
int n = (*this).size(), mod = T::mod();
std::vector<T> inv(n);
{
inv[1] = 1;
for(int i = 2; i < n; ++i)
inv[i] = T(mod) - inv[mod % i] * (mod / i);
}
for(int i = n - 2; i >= 0; --i) (*this)[i + 1] = (*this)[i] * inv[i + 1];
(*this)[0] = 0;
return *this;
}
F integral() const { return F(*this).integral_inplace(); }
F &log_inplace() {
int n = (*this).size();
assert(n and (*this)[0] == 1);
F f_inv = (*this).inv();
(*this).diff_inplace();
(*this) *= f_inv;
(*this).integral_inplace();
return *this;
}
F log() const { return F(*this).log_inplace(); }
F &deriv_inplace() {
int n = (*this).size();
assert(n);
for(int i = 2; i < n; ++i) (*this)[i] *= i;
(*this).erase((*this).begin());
(*this).push_back(0);
return *this;
}
F deriv() const { return F(*this).deriv_inplace(); }
F &exp_inplace() {
int n = (*this).size();
assert(n and (*this)[0] == 0);
F g{1};
(*this)[0] = 1;
F h_drv((*this).deriv());
for(int m = 1; m < n; m *= 2) {
F f((*this).begin(), (*this).begin() + m);
f.resize(2 * m), atcoder::internal::butterfly(f);
auto mult_f = [&](F &p) {
p.resize(2 * m);
atcoder::internal::butterfly(p);
for(int i = 0; i < 2 * m; ++i) p[i] *= f[i];
atcoder::internal::butterfly_inv(p);
p /= 2 * m;
};
if(m > 1) {
F g_(g);
g_.resize(2 * m), atcoder::internal::butterfly(g_);
for(int i = 0; i < 2 * m; ++i) g_[i] *= g_[i] * f[i];
atcoder::internal::butterfly_inv(g_);
T iz = T(-2 * m).inv();
g_ *= iz;
g.insert(g.end(), g_.begin() + m / 2, g_.begin() + m);
}
F t((*this).begin(), (*this).begin() + m);
t.deriv_inplace();
{
F r{h_drv.begin(), h_drv.begin() + m - 1};
mult_f(r);
for(int i = 0; i < m; ++i) t[i] -= r[i] + r[m + i];
}
t.insert(t.begin(), t.back());
t.pop_back();
t *= g;
F v((*this).begin() + m, (*this).begin() + std::min(n, 2 * m));
v.resize(m);
t.insert(t.begin(), m - 1, 0);
t.push_back(0);
t.integral_inplace();
for(int i = 0; i < m; ++i) v[i] -= t[m + i];
mult_f(v);
for(int i = 0; i < std::min(n - m, m); ++i)
(*this)[m + i] = v[i];
}
return *this;
}
F exp() const { return F(*this).exp_inplace(); }
F &pow_inplace(long long k) {
int n = (*this).size(), l = 0;
assert(k >= 0);
if(!k){
for(int i = 0; i < n; ++i) (*this)[i] = !i;
return *this;
}
while(l < n and (*this)[l] == 0) ++l;
if(l > (n - 1) / k or l == n) return *this = F(n);
T c = (*this)[l];
(*this).erase((*this).begin(), (*this).begin() + l);
(*this) /= c;
(*this).log_inplace();
(*this).resize(n - l * k);
(*this) *= k;
(*this).exp_inplace();
(*this) *= c.pow(k);
(*this).insert((*this).begin(), l * k, 0);
return *this;
}
F pow(const long long k) const { return F(*this).pow_inplace(); }
void manymul(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
if (d == 0) g.erase(g.begin());
else c = 0;
drep(i, n) {
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i-j] * b;
}
}
}
void manydiv(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
rep(i, 0,n) {
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i-j] * b;
}
(*this)[i] *= ic;
}
}
};
template<class T>
void GaussJordan(vector<vector<T>> &A,bool is_extended = false){
ll m=A.size(),n=A[0].size();
ll rank=0;
for(int i=0;i<n;i++){
if(is_extended&&i==n-1) break;
ll p=-1;
for(int j=rank;j<m;j++){
if(A[j][i]!=T(0)){
p=j;
break;
}
}
if(p==-1) continue;
swap(A[p],A[rank]);
auto k=A[rank][i];
for(int i2=0;i2<n;i2++){
A[rank][i2]/=k;
}
for(int j=0;j<m;j++){
if(j!=rank&&A[j][i]!=T(0)){
auto fac=A[j][i];
for(int i2=0;i2<n;i2++){
A[j][i2]-=A[rank][i2]*fac;
}
}
}
rank++;
}
}
template<class T>
void linear_equation(vector<vector<T>> a, vector<T> b, vector<T> &res) {
ll m=a.size(),n=a[0].size();
vector<vector<T>> M(m,vector<T>(n+1));
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
M[i][j]=a[i][j];
}
M[i][n]=b[i];
}
GaussJordan(M,true);
res.assign(n,0);
for(int i=0;i<n;i++) res[i]=M[i][n];
}
template<class F>
pair<F,F> Characteristic_equation(const F &a) {
using T=typename F::value_type;
ll n=a.size();
ll p=n/2;
ll u=p+(p+1);
vector<vector<T>> f(u,vector<T>(u));
f[0][0]=1;
for(int i=1;i<=p;i++){
f[i][i-1]=-1;
}
for(int i=p;i<u;i++){
ll t=0;
for(int j=1+i-p;j<u;j++){
f[j][i]=a[t];
t++;
}
}
vector<T> b(u);
b[0]=1;
vector<T> res(u);
linear_equation(f,b,res);
F X(p),Y(p+1);
for(int i=0;i<p;i++) X[i]=res[i];
for(int j=p;j<res.size();j++) Y[j-p]=res[j];
return {X,Y};
}
template <class T, Mode mode>
T getK(FormalPowerSeries<T, mode> p, FormalPowerSeries<T, mode> q,ll k){
if(k<0) return T(0);
ll d=q.size();
while(k){
auto qn=q;
for(int i=1;i<d;i+=2) qn[i]*=-1;
p.resize(2*d);
q.resize(2*d);
p*=qn;
q*=qn;
for(int i=0;i<d-1;i++){
p[i]=p[(i<<1)|(k&1)];
}
for(int i=0;i<d;i++){
q[i]=q[(i<<1)];
}
p.resize(d-1);
q.resize(d);
k/=2;
}
return p[0];
}
/*using mint = modint1000000007;
using fps = FormalPowerSeries<atcoder::modint1000000007,NAIVE>;*/
using mint = modint998244353;
using fps = FormalPowerSeries<atcoder::modint998244353,FAST>;
/*fps TaylorShift(fps f,mint c){
for(int i=0;i<n;i++){
f[i]*=fac[i];
}
fps g(n);
for(int i=0;i<n;i++){
g[n-i-1]=c.pow(i)*finv[i];
}
g*=f;
fps res(n);
for(int i=0;i<n;i++){
res[i]=g[n+i-1]*finv[i];
}
return res;
}*/
constexpr ll MAX = 1000000;
ll fac[MAX],finv[MAX],inv[MAX];
void COMinit(){
fac[0]=fac[1]=1;
finv[0]=finv[1]=1;
inv[1]=1;
for(int i=2;i<MAX;i++){
fac[i]=fac[i-1]*i%mod;
inv[i]=mod-inv[mod%i]*(mod/i)%mod;
finv[i]=finv[i-1]*inv[i]%mod;
}
}
ll binom(ll n,ll k){
if(n<k) return 0;
if(n<0||k<0) return 0;
return fac[n]*(finv[k]*finv[n-k]%mod)%mod;
}
ll HOM(ll n,ll k){
if(n+k-1>=n-1&&n-1>=0){
return binom(n+k-1,n-1);
}
else{
return 0;
}
}
int main() {
cincout();
COMinit();
ll n;
cin>>n;
ll p;
cin>>p;
if(n%4!=1){
cout<<0<<endl;
return 0;
}
ll m=(n/4);
mint ans=1;
if(m-1<p*7){
cout<<0<<endl;
return 0;
}
for(int i=1;i<=n;i++) ans*=i;
for(int i=1;i<=m;i++) ans/=i;
ans/=mint(6).pow(m);
ans/=n-m;
ans*=binom(3*m+1,p);
fps f(m),g(m);
if(m-1>=7) f[7]=finv[7];
for(int i=0;i<min(7ll,m);i++) g[i]=finv[i];
f=f.pow_inplace(p);
g=g.pow_inplace(3*m+1-p);
f*=g;
ans*=f[m-1];
for(int i=1;i<=m-1;i++) ans*=i;
cout<<ans.val()<<endl;
}
ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0