結果
問題 | No.187 中華風 (Hard) |
ユーザー | koba-e964 |
提出日時 | 2021-10-09 11:34:21 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 49 ms / 3,000 ms |
コード長 | 6,897 bytes |
コンパイル時間 | 13,819 ms |
コンパイル使用メモリ | 392,172 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-26 18:56:40 |
合計ジャッジ時間 | 15,971 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 16 ms
6,816 KB |
testcase_01 | AC | 16 ms
6,812 KB |
testcase_02 | AC | 29 ms
6,940 KB |
testcase_03 | AC | 29 ms
6,944 KB |
testcase_04 | AC | 47 ms
6,940 KB |
testcase_05 | AC | 49 ms
6,940 KB |
testcase_06 | AC | 48 ms
6,944 KB |
testcase_07 | AC | 47 ms
6,944 KB |
testcase_08 | AC | 36 ms
6,940 KB |
testcase_09 | AC | 36 ms
6,944 KB |
testcase_10 | AC | 36 ms
6,940 KB |
testcase_11 | AC | 47 ms
6,944 KB |
testcase_12 | AC | 47 ms
6,940 KB |
testcase_13 | AC | 17 ms
6,940 KB |
testcase_14 | AC | 16 ms
6,944 KB |
testcase_15 | AC | 28 ms
6,940 KB |
testcase_16 | AC | 30 ms
6,944 KB |
testcase_17 | AC | 1 ms
6,940 KB |
testcase_18 | AC | 13 ms
6,944 KB |
testcase_19 | AC | 1 ms
6,940 KB |
testcase_20 | AC | 39 ms
6,940 KB |
testcase_21 | AC | 1 ms
6,940 KB |
testcase_22 | AC | 47 ms
6,940 KB |
testcase_23 | AC | 1 ms
6,944 KB |
testcase_24 | AC | 1 ms
6,944 KB |
ソースコード
use std::collections::*; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } // https://judge.yosupo.jp/submission/5155 mod pollard_rho { /// binary gcd pub fn gcd(mut x: i64, mut y: i64) -> i64 { if y == 0 { return x; } if x == 0 { return y; } let k = (x | y).trailing_zeros(); y >>= k; x >>= x.trailing_zeros(); while y != 0 { y >>= y.trailing_zeros(); if x > y { let t = x; x = y; y = t; } y -= x; } x << k } fn add_mod(x: i64, y: i64, n: i64) -> i64 { let z = x + y; if z >= n { z - n } else { z } } fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 { assert!(x >= 0); assert!(x < n); let mut sum = 0; let mut cur = x; while y > 0 { if (y & 1) == 1 { sum = add_mod(sum, cur, n); } cur = add_mod(cur, cur, n); y >>= 1; } sum } fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 { let mut prod = if n == 1 { 0 } else { 1 }; let mut cur = x % n; while e > 0 { if (e & 1) == 1 { prod = mul_mod(prod, cur, n); } e >>= 1; if e > 0 { cur = mul_mod(cur, cur, n); } } prod } pub fn is_prime(n: i64) -> bool { if n <= 1 { return false; } let small = [2, 3, 5, 7, 11, 13]; if small.iter().any(|&u| u == n) { return true; } if small.iter().any(|&u| n % u == 0) { return false; } let mut d = n - 1; let e = d.trailing_zeros(); d >>= e; // https://miller-rabin.appspot.com/ let a = [2, 325, 9375, 28178, 450775, 9780504, 1795265022]; a.iter().all(|&a| { if a % n == 0 { return true; } let mut x = mod_pow(a, d, n); if x == 1 { return true; } for _ in 0..e { if x == n - 1 { return true; } x = mul_mod(x, x, n); if x == 1 { return false; } } x == 1 }) } fn pollard_rho(n: i64, c: &mut i64) -> i64 { // An improvement with Brent's cycle detection algorithm is performed. // https://maths-people.anu.edu.au/~brent/pub/pub051.html if n % 2 == 0 { return 2; } loop { let mut x: i64; // tortoise let mut y = 2; // hare let mut d = 1; let cc = *c; let f = |i| add_mod(mul_mod(i, i, n), cc, n); let mut r = 1; // We don't perform the gcd-once-in-a-while optimization // because the plain gcd-every-time algorithm appears to // outperform, at least on judge.yosupo.jp :) while d == 1 { x = y; for _ in 0..r { y = f(y); d = gcd((x - y).abs(), n); if d != 1 { break; } } r *= 2; } if d == n { *c += 1; continue; } return d; } } /// Outputs (p, e) in p's ascending order. pub fn factorize(x: i64) -> Vec<(i64, usize)> { if x <= 1 { return vec![]; } let mut hm = std::collections::HashMap::new(); let mut pool = vec![x]; let mut c = 1; while let Some(u) = pool.pop() { if is_prime(u) { *hm.entry(u).or_insert(0) += 1; continue; } let p = pollard_rho(u, &mut c); pool.push(p); pool.push(u / p); } let mut v: Vec<_> = hm.into_iter().collect(); v.sort(); v } } // mod pollard_rho fn ext_gcd(a: i64, b: i64) -> (i64, i64, i64) { if b == 0 { return (a, 1, 0); } let r = a % b; let q = a / b; let (g, x, y) = ext_gcd(b, r); (g, y, x - q * y) } fn inv_mod(a: i64, b: i64) -> i64 { let (_, mut x, _) = ext_gcd(a, b); x %= b; if x < 0 { x += b; } x } // gcd(rm[i].1, rm[j].1) == 1 for i != j // Ref: https://www.creativ.xyz/ect-gcd-crt-garner-927/ // O(n^2) fn garner(rm: &[(i64, i64)], mo: i64) -> i64 { let n = rm.len(); let mut x_mo = (rm[0].0 % rm[0].1) % mo; let mut mp_mo = 1; let mut coef = Vec::with_capacity(n); coef.push(rm[0].0 % rm[0].1); for i in 1..n { let (r, m) = rm[i]; let r = r % m; let mut mp_mi = 1; let mut x_mi = 0; mp_mo = mp_mo * (rm[i - 1].1 % mo) % mo; for j in 0..i { x_mi = (x_mi + mp_mi * (coef[j] % m)) % m; mp_mi = mp_mi * (rm[j].1 % m) % m; } let t = (r - x_mi + m) % m * inv_mod(mp_mi, m) % m; x_mo = (x_mo + t % mo * mp_mo) % mo; coef.push(t); } x_mo } // Tags: chinese-remainder-theorem, garners-algorithm fn main() { input! { n: usize, xy: [(i64, i64); n], } let mut hm = HashMap::new(); for &(x, y) in &xy { let pe = pollard_rho::factorize(y); for &(p, e) in &pe { let mut v = 1; for _ in 0..e { v *= p; } hm.entry(p).or_insert(vec![]).push((v, x % v)); } } let mut dat = vec![]; for (_, mut v) in hm { v.sort(); let (y, x) = v[v.len() - 1]; for &(b, a) in &v { if a != x % b { println!("-1"); return; } } dat.push((x, y)) } const MOD: i64 = 1_000_000_007; let mut val = garner(&dat, MOD); // We need the positive maximum; if the result is 0, we need \prod m. if dat.iter().all(|&(r, _)| r == 0) { let mut prod = 1; for &(_, m) in &dat { prod = prod * m % MOD; } val = (val + prod) % MOD; } println!("{}", val); }