結果
| 問題 |
No.187 中華風 (Hard)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-10-09 11:34:21 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 49 ms / 3,000 ms |
| コード長 | 6,897 bytes |
| コンパイル時間 | 16,459 ms |
| コンパイル使用メモリ | 387,540 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2025-02-21 18:55:31 |
| 合計ジャッジ時間 | 16,856 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 25 |
ソースコード
use std::collections::*;
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
// https://judge.yosupo.jp/submission/5155
mod pollard_rho {
/// binary gcd
pub fn gcd(mut x: i64, mut y: i64) -> i64 {
if y == 0 { return x; }
if x == 0 { return y; }
let k = (x | y).trailing_zeros();
y >>= k;
x >>= x.trailing_zeros();
while y != 0 {
y >>= y.trailing_zeros();
if x > y { let t = x; x = y; y = t; }
y -= x;
}
x << k
}
fn add_mod(x: i64, y: i64, n: i64) -> i64 {
let z = x + y;
if z >= n { z - n } else { z }
}
fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 {
assert!(x >= 0);
assert!(x < n);
let mut sum = 0;
let mut cur = x;
while y > 0 {
if (y & 1) == 1 { sum = add_mod(sum, cur, n); }
cur = add_mod(cur, cur, n);
y >>= 1;
}
sum
}
fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 {
let mut prod = if n == 1 { 0 } else { 1 };
let mut cur = x % n;
while e > 0 {
if (e & 1) == 1 { prod = mul_mod(prod, cur, n); }
e >>= 1;
if e > 0 { cur = mul_mod(cur, cur, n); }
}
prod
}
pub fn is_prime(n: i64) -> bool {
if n <= 1 { return false; }
let small = [2, 3, 5, 7, 11, 13];
if small.iter().any(|&u| u == n) { return true; }
if small.iter().any(|&u| n % u == 0) { return false; }
let mut d = n - 1;
let e = d.trailing_zeros();
d >>= e;
// https://miller-rabin.appspot.com/
let a = [2, 325, 9375, 28178, 450775, 9780504, 1795265022];
a.iter().all(|&a| {
if a % n == 0 { return true; }
let mut x = mod_pow(a, d, n);
if x == 1 { return true; }
for _ in 0..e {
if x == n - 1 {
return true;
}
x = mul_mod(x, x, n);
if x == 1 { return false; }
}
x == 1
})
}
fn pollard_rho(n: i64, c: &mut i64) -> i64 {
// An improvement with Brent's cycle detection algorithm is performed.
// https://maths-people.anu.edu.au/~brent/pub/pub051.html
if n % 2 == 0 { return 2; }
loop {
let mut x: i64; // tortoise
let mut y = 2; // hare
let mut d = 1;
let cc = *c;
let f = |i| add_mod(mul_mod(i, i, n), cc, n);
let mut r = 1;
// We don't perform the gcd-once-in-a-while optimization
// because the plain gcd-every-time algorithm appears to
// outperform, at least on judge.yosupo.jp :)
while d == 1 {
x = y;
for _ in 0..r {
y = f(y);
d = gcd((x - y).abs(), n);
if d != 1 { break; }
}
r *= 2;
}
if d == n {
*c += 1;
continue;
}
return d;
}
}
/// Outputs (p, e) in p's ascending order.
pub fn factorize(x: i64) -> Vec<(i64, usize)> {
if x <= 1 { return vec![]; }
let mut hm = std::collections::HashMap::new();
let mut pool = vec![x];
let mut c = 1;
while let Some(u) = pool.pop() {
if is_prime(u) {
*hm.entry(u).or_insert(0) += 1;
continue;
}
let p = pollard_rho(u, &mut c);
pool.push(p);
pool.push(u / p);
}
let mut v: Vec<_> = hm.into_iter().collect();
v.sort();
v
}
} // mod pollard_rho
fn ext_gcd(a: i64, b: i64) -> (i64, i64, i64) {
if b == 0 {
return (a, 1, 0);
}
let r = a % b;
let q = a / b;
let (g, x, y) = ext_gcd(b, r);
(g, y, x - q * y)
}
fn inv_mod(a: i64, b: i64) -> i64 {
let (_, mut x, _) = ext_gcd(a, b);
x %= b;
if x < 0 {
x += b;
}
x
}
// gcd(rm[i].1, rm[j].1) == 1 for i != j
// Ref: https://www.creativ.xyz/ect-gcd-crt-garner-927/
// O(n^2)
fn garner(rm: &[(i64, i64)], mo: i64) -> i64 {
let n = rm.len();
let mut x_mo = (rm[0].0 % rm[0].1) % mo;
let mut mp_mo = 1;
let mut coef = Vec::with_capacity(n);
coef.push(rm[0].0 % rm[0].1);
for i in 1..n {
let (r, m) = rm[i];
let r = r % m;
let mut mp_mi = 1;
let mut x_mi = 0;
mp_mo = mp_mo * (rm[i - 1].1 % mo) % mo;
for j in 0..i {
x_mi = (x_mi + mp_mi * (coef[j] % m)) % m;
mp_mi = mp_mi * (rm[j].1 % m) % m;
}
let t = (r - x_mi + m) % m * inv_mod(mp_mi, m) % m;
x_mo = (x_mo + t % mo * mp_mo) % mo;
coef.push(t);
}
x_mo
}
// Tags: chinese-remainder-theorem, garners-algorithm
fn main() {
input! {
n: usize,
xy: [(i64, i64); n],
}
let mut hm = HashMap::new();
for &(x, y) in &xy {
let pe = pollard_rho::factorize(y);
for &(p, e) in &pe {
let mut v = 1;
for _ in 0..e {
v *= p;
}
hm.entry(p).or_insert(vec![]).push((v, x % v));
}
}
let mut dat = vec![];
for (_, mut v) in hm {
v.sort();
let (y, x) = v[v.len() - 1];
for &(b, a) in &v {
if a != x % b {
println!("-1");
return;
}
}
dat.push((x, y))
}
const MOD: i64 = 1_000_000_007;
let mut val = garner(&dat, MOD);
// We need the positive maximum; if the result is 0, we need \prod m.
if dat.iter().all(|&(r, _)| r == 0) {
let mut prod = 1;
for &(_, m) in &dat {
prod = prod * m % MOD;
}
val = (val + prod) % MOD;
}
println!("{}", val);
}