結果
問題 | No.1704 Many Bus Stops (easy) |
ユーザー | NatsubiSogan |
提出日時 | 2021-10-10 17:09:52 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,264 bytes |
コンパイル時間 | 136 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 17,280 KB |
最終ジャッジ日時 | 2024-09-14 12:34:41 |
合計ジャッジ時間 | 4,112 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge6 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 48 ms
17,280 KB |
testcase_01 | TLE | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
ソースコード
import typing # 拡張Euclidの互除法 def extgcd(a: int, b: int, d: int = 0) -> typing.Tuple[int, int, int]: g = a if b == 0: x, y = 1, 0 else: x, y, g = extgcd(b, a % b) x, y = y, x - a // b * y return x, y, g # mod p における逆元 def invmod(a: int, p: int) -> int: x, y, g = extgcd(a, p) x %= p return x # 行列ライブラリ(遅い) class Matrix: def __init__(self, n: int, m: int, mat: typing.Union[list, None] = None, mod: int = 10 ** 9 + 7) -> None: self.n = n self.m = m self.mat = [[0] * self.m for i in range(self.n)] self.mod = mod if mat: for i in range(self.n): self.mat[i] = mat[i] def is_square(self) -> None: return self.n == self.m def __getitem__(self, key: int) -> int: if isinstance(key, slice): return self.mat[key] else: assert key >= 0 return self.mat[key] def id(n: int): res = Matrix(n, n) for i in range(n): res[i][i] = 1 return res def __len__(self) -> int: return len(self.mat) def __str__(self) -> str: return "\n".join(" ".join(map(str, self[i])) for i in range(self.n)) def times(self, k: int): res = [[0] * self.m for i in range(self.n)] for i in range(self.n): for j in range(self.m): res[i][j] = k * self[i][j] % self.mod return Matrix(self.n, self.m, res) def __pos__(self): return self def __neg__(self): return self.times(-1) def __add__(self, other): res = [[0] * self.m for i in range(self.n)] for i in range(self.n): for j in range(self.m): res[i][j] = (self[i][j] + other[i][j]) % self.mod return Matrix(self.n, self.m, res) def __sub__(self, other): res = [[0] * self.m for i in range(self.n)] for i in range(self.n): for j in range(self.m): res[i][j] = (self[i][j] - other[i][j]) % self.mod return Matrix(self.n, self.m, res) def __mul__(self, other): if other.__class__ == Matrix: res = [[0] * other.m for i in range(self.n)] for i in range(self.n): for k in range(self.m): for j in range(other.m): res[i][j] += self[i][k] * other[k][j] res[i][j] %= self.mod return Matrix(self.n, other.m, res) else: return self.times(other) def __rmul__(self, other): return self.times(other) def __pow__(self, k): tmp = Matrix(self.n, self.n, self.mat) res = Matrix.id(self.n) while k: if k & 1: res *= tmp tmp *= tmp k >>= 1 return res def determinant(self): res = 1 tmp = Matrix(self.n, self.n, self.mat) for j in range(self.n): if tmp[j][j] == 0: for i in range(j + 1, self.n): if tmp[i][j] != 0: break else: return 0 tmp.mat[j], tmp.mat[i] = tmp.mat[i], tmp.mat[j] res *= -1 inv = invmod(tmp[j][j], self.mod) for i in range(j + 1, self.n): c = -inv * tmp[i][j] % self.mod for k in range(self.n): tmp[i][k] += c * tmp[j][k] tmp[i][k] %= self.mod for i in range(self.n): res *= tmp[i][i] res %= self.mod return res mod = 10 ** 9 + 7 for _ in range(int(input())): n = int(input()) a = Matrix(6, 6, [[1, 0, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1], [0, 0, 1, 1, 1, 0], [3, 0, 0, 0, 0, 0], [0, 3, 0, 0, 0, 0], [0, 0, 3, 0, 0, 0]], mod) a **= n a *= Matrix(6, 1, [[1], [0], [0], [3], [0], [0]]) ans = a[3][0] print(ans * pow(invmod(3, mod), n + 1, mod) % mod)