結果
| 問題 | 
                            No.1704 Many Bus Stops (easy)
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2021-10-10 17:09:52 | 
| 言語 | Python3  (3.13.1 + numpy 2.2.1 + scipy 1.14.1)  | 
                    
| 結果 | 
                             
                                TLE
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 3,264 bytes | 
| コンパイル時間 | 136 ms | 
| コンパイル使用メモリ | 13,056 KB | 
| 実行使用メモリ | 17,280 KB | 
| 最終ジャッジ日時 | 2024-09-14 12:34:41 | 
| 合計ジャッジ時間 | 4,112 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge3 / judge6 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 | 
| other | TLE * 1 -- * 40 | 
ソースコード
import typing
# 拡張Euclidの互除法
def extgcd(a: int, b: int, d: int = 0) -> typing.Tuple[int, int, int]:
	g = a
	if b == 0:
		x, y = 1, 0
	else:
		x, y, g = extgcd(b, a % b)
		x, y = y, x - a // b * y
	return x, y, g
 
# mod p における逆元
def invmod(a: int, p: int) -> int:
	x, y, g = extgcd(a, p)
	x %= p
	return x
# 行列ライブラリ(遅い)
class Matrix:
	def __init__(self, n: int, m: int, mat: typing.Union[list, None] = None, mod: int = 10 ** 9 + 7) -> None:
		self.n = n
		self.m = m
		self.mat = [[0] * self.m for i in range(self.n)]
		self.mod = mod
		if mat:
			for i in range(self.n):
				self.mat[i] = mat[i]
	
	def is_square(self) -> None:
		return self.n == self.m
	
	def __getitem__(self, key: int) -> int:
		if isinstance(key, slice):
			return self.mat[key]
		else:
			assert key >= 0
			return self.mat[key]
	def id(n: int):
		res = Matrix(n, n)
		for i in range(n):
			res[i][i] = 1
		return res
	def __len__(self) -> int:
		return len(self.mat)
	
	def __str__(self) -> str:
		return "\n".join(" ".join(map(str, self[i])) for i in range(self.n))
	def times(self, k: int):
		res = [[0] * self.m for i in range(self.n)]
		for i in range(self.n):
			for j in range(self.m):
				res[i][j] = k * self[i][j] % self.mod
		return Matrix(self.n, self.m, res)
	def __pos__(self):
		return self
	def __neg__(self):
		return self.times(-1)
	def __add__(self, other):
		res = [[0] * self.m for i in range(self.n)]
		for i in range(self.n):
			for j in range(self.m):
				res[i][j] = (self[i][j] + other[i][j]) % self.mod
		return Matrix(self.n, self.m, res)
	
	def __sub__(self, other):
		res = [[0] * self.m for i in range(self.n)]
		for i in range(self.n):
			for j in range(self.m):
				res[i][j] = (self[i][j] - other[i][j]) % self.mod
		return Matrix(self.n, self.m, res)
	def __mul__(self, other):
		if other.__class__ == Matrix:
			res = [[0] * other.m for i in range(self.n)]
			for i in range(self.n):
				for k in range(self.m):
					for j in range(other.m):
						res[i][j] += self[i][k] * other[k][j]
						res[i][j] %= self.mod
			return Matrix(self.n, other.m, res)
		else:
			return self.times(other)
	
	def __rmul__(self, other):
		return self.times(other)
	def __pow__(self, k):
		tmp = Matrix(self.n, self.n, self.mat)
		res = Matrix.id(self.n)
		while k:
			if k & 1:
				res *= tmp
			tmp *= tmp
			k >>= 1
		return res
	def determinant(self):
		res = 1
		tmp  = Matrix(self.n, self.n, self.mat)
		for j in range(self.n):
			if tmp[j][j] == 0:
				for i in range(j + 1, self.n):
					if tmp[i][j] != 0: break
				else:
					return 0
				tmp.mat[j], tmp.mat[i] = tmp.mat[i], tmp.mat[j]
				res *= -1
			inv = invmod(tmp[j][j], self.mod)
			for i in range(j + 1, self.n):
				c = -inv * tmp[i][j] % self.mod
				for k in range(self.n):
					tmp[i][k] += c * tmp[j][k]
					tmp[i][k] %= self.mod
		for i in range(self.n):
			res *= tmp[i][i]
			res %= self.mod
		return res
mod = 10 ** 9 + 7
for _ in range(int(input())):
	n = int(input())
	a = Matrix(6, 6, [[1, 0, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1], [0, 0, 1, 1, 1, 0], [3, 0, 0, 0, 0, 0], [0, 3, 0, 0, 0, 0], [0, 0, 3, 0, 0, 0]], mod)
	a **= n
	a *= Matrix(6, 1, [[1], [0], [0], [3], [0], [0]])
	ans = a[3][0]
	print(ans * pow(invmod(3, mod), n + 1, mod) % mod)