結果

問題 No.1706 Many Bus Stops (hard)
ユーザー NatsubiSogan
提出日時 2021-10-10 17:50:18
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
AC  
実行時間 46 ms / 2,000 ms
コード長 3,198 bytes
コンパイル時間 94 ms
コンパイル使用メモリ 13,056 KB
実行使用メモリ 11,904 KB
最終ジャッジ日時 2024-09-14 13:27:35
合計ジャッジ時間 3,124 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import typing
class Matrix:
def __init__(self, n: int, m: int, mat: typing.Union[list, None] = None, mod: int = 10 ** 9 + 7) -> None:
self.n = n
self.m = m
self.mat = [[0] * self.m for i in range(self.n)]
self.mod = mod
if mat:
for i in range(self.n):
self.mat[i] = mat[i]
def is_square(self) -> None:
return self.n == self.m
def __getitem__(self, key: int) -> int:
if isinstance(key, slice):
return self.mat[key]
else:
assert key >= 0
return self.mat[key]
def id(n: int):
res = Matrix(n, n)
for i in range(n):
res[i][i] = 1
return res
def __len__(self) -> int:
return len(self.mat)
def __str__(self) -> str:
return "\n".join(" ".join(map(str, self[i])) for i in range(self.n))
def times(self, k: int):
res = [[0] * self.m for i in range(self.n)]
for i in range(self.n):
for j in range(self.m):
res[i][j] = k * self[i][j] % self.mod
return Matrix(self.n, self.m, res)
def __pos__(self):
return self
def __neg__(self):
return self.times(-1)
def __add__(self, other):
res = [[0] * self.m for i in range(self.n)]
for i in range(self.n):
for j in range(self.m):
res[i][j] = (self[i][j] + other[i][j]) % self.mod
return Matrix(self.n, self.m, res)
def __sub__(self, other):
res = [[0] * self.m for i in range(self.n)]
for i in range(self.n):
for j in range(self.m):
res[i][j] = (self[i][j] - other[i][j]) % self.mod
return Matrix(self.n, self.m, res)
def __mul__(self, other):
if other.__class__ == Matrix:
res = [[0] * other.m for i in range(self.n)]
for i in range(self.n):
for k in range(self.m):
for j in range(other.m):
res[i][j] += self[i][k] * other[k][j]
res[i][j] %= self.mod
return Matrix(self.n, other.m, res)
else:
return self.times(other)
def __rmul__(self, other):
return self.times(other)
def __pow__(self, k):
tmp = Matrix(self.n, self.n, self.mat)
res = Matrix.id(self.n)
while k:
if k & 1:
res *= tmp
tmp *= tmp
k >>= 1
return res
def determinant(self):
res = 1
tmp = Matrix(self.n, self.n, self.mat)
for j in range(self.n):
if tmp[j][j] == 0:
for i in range(j + 1, self.n):
if tmp[i][j] != 0: break
else:
return 0
tmp.mat[j], tmp.mat[i] = tmp.mat[i], tmp.mat[j]
res *= -1
inv = invmod(tmp[j][j], self.mod)
for i in range(j + 1, self.n):
c = -inv * tmp[i][j] % self.mod
for k in range(self.n):
tmp[i][k] += c * tmp[j][k]
tmp[i][k] %= self.mod
for i in range(self.n):
res *= tmp[i][i]
res %= self.mod
return res
# Euclid
def extgcd(a: int, b: int, d: int = 0) -> typing.Tuple[int, int, int]:
g = a
if b == 0:
x, y = 1, 0
else:
x, y, g = extgcd(b, a % b)
x, y = y, x - a // b * y
return x, y, g
# mod p
def invmod(a: int, p: int) -> int:
x, y, g = extgcd(a, p)
x %= p
return x
mod = 10 ** 9 + 7
c, n, m = map(int, input().split())
a = Matrix(4, 4, [[1, 0, 0, 1], [0, 1, c - 1, c - 2], [c, 0, 0, 0], [0, c, 0, 0]], mod)
a **= n
a *= Matrix(4, 1, [[1], [0], [c], [0]], mod)
x = a[2][0] * pow(invmod(c, mod), n + 1, mod)
x = (1 - x) % mod
x = pow(x, m, mod)
x = (1 - x) % mod
print(x)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0