結果
| 問題 |
No.58 イカサマなサイコロ
|
| ユーザー |
keijak
|
| 提出日時 | 2021-10-19 17:56:40 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 5,000 ms |
| コード長 | 9,111 bytes |
| コンパイル時間 | 2,703 ms |
| コンパイル使用メモリ | 251,004 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-09-20 06:24:12 |
| 合計ジャッジ時間 | 3,257 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
ソースコード
#include <bits/stdc++.h>
#define REP_(i, a_, b_, a, b, ...) \
for (int i = (a), END_##i = (b); i < END_##i; ++i)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(x) std::begin(x), std::end(x)
using i64 = long long;
template<typename T, typename U>
inline bool chmax(T &a, U b) {
return a < b and ((a = std::move(b)), true);
}
template<typename T, typename U>
inline bool chmin(T &a, U b) {
return a > b and ((a = std::move(b)), true);
}
template<typename T>
inline int ssize(const T &a) {
return (int) a.size();
}
template<class T>
inline std::ostream &print_one(const T &x, char endc) {
if constexpr (std::is_same_v<T, bool>) {
return std::cout << (x ? "Yes" : "No") << endc;
} else {
return std::cout << x << endc;
}
}
template<class T>
inline std::ostream &print(const T &x) { return print_one(x, '\n'); }
template<typename T, typename... Ts>
std::ostream &print(const T &head, Ts... tail) {
return print_one(head, ' '), print(tail...);
}
inline std::ostream &print() { return std::cout << '\n'; }
template<typename Container>
std::ostream &print_seq(const Container &a, std::string_view sep = " ",
std::string_view ends = "\n",
std::ostream &os = std::cout) {
auto b = std::begin(a), e = std::end(a);
for (auto it = std::begin(a); it != e; ++it) {
if (it != b) os << sep;
os << *it;
}
return os << ends;
}
template<typename T, typename = void>
struct is_iterable : std::false_type {};
template<typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
decltype(std::end(std::declval<T>()))>>
: std::true_type {
};
template<typename T, typename = std::enable_if_t<
is_iterable<T>::value && !std::is_same<T, std::string>::value>>
std::ostream &operator<<(std::ostream &os, const T &a) {
return print_seq(a, ", ", "", (os << "{")) << "}";
}
struct CastInput {
template<typename T>
operator T() const {
T x;
std::cin >> x;
return x;
}
struct Sized {
std::size_t n;
template<typename T>
operator T() const {
T x(n);
for (auto &e: x) std::cin >> e;
return x;
}
};
Sized operator()(std::size_t n) const { return {n}; }
} const in;
inline void check(bool cond, const char *message = "!ERROR!") {
if (not cond) throw std::runtime_error(message);
}
#ifdef MY_DEBUG
#include "debug_dump.hpp"
#else
#define DUMP(...)
#define cerr if(false)std::cerr
#endif
using namespace std;
template<typename T, int DMAX>
struct NaiveMult {
using value_type = T;
static constexpr int dmax() { return DMAX; }
static std::vector<T> multiply(const std::vector<T> &x,
const std::vector<T> &y) {
const int n = std::min<int>(x.size() + y.size() - 1, DMAX + 1);
const int mi = std::min<int>(x.size(), n);
std::vector<T> res(n);
for (int i = 0; i < mi; ++i) {
for (int j = 0; j < int(y.size()); ++j) {
if (i + j >= n) break;
res[i + j] += x[i] * y[j];
}
}
return res;
}
static std::vector<T> invert(const std::vector<T> &x) {
std::vector<T> res(DMAX + 1);
res[0] = x[0].inv();
for (int i = 1; i <= DMAX; ++i) {
T s = 0;
const int mj = std::min<int>(i + 1, x.size());
for (int j = 1; j < mj; ++j) {
s += x[j] * res[i - j];
}
res[i] = -res[0] * s;
}
return res;
}
};
// Formal Power Series (dense format).
template<typename Mult>
struct DenseFPS {
using T = typename Mult::value_type;
static constexpr int dmax() { return Mult::dmax(); }
// Coefficients of terms from x^0 to x^DMAX.
std::vector<T> coeff_;
DenseFPS() : coeff_(1, 0) {} // = 0 * x^0
explicit DenseFPS(std::vector<T> c) : coeff_(std::move(c)) {
while (size() > dmax() + 1) coeff_.pop_back();
assert(size() > 0);
}
DenseFPS(std::initializer_list<T> init) : coeff_(init.begin(), init.end()) {
while (size() > dmax() + 1) coeff_.pop_back();
assert(size() > 0);
}
DenseFPS(const DenseFPS &other) : coeff_(other.coeff_) {}
DenseFPS(DenseFPS &&other) : coeff_(std::move(other.coeff_)) {}
DenseFPS &operator=(const DenseFPS &other) {
coeff_ = other.coeff_;
return *this;
}
DenseFPS &operator=(DenseFPS &&other) {
coeff_ = std::move(other.coeff_);
return *this;
}
// size <= dmax + 1
inline int size() const { return static_cast<int>(coeff_.size()); }
// Returns the coefficient of x^k.
inline T operator[](int k) const { return (k >= size()) ? 0 : coeff_[k]; }
DenseFPS &operator+=(const T &scalar) {
coeff_[0] += scalar;
return *this;
}
friend DenseFPS operator+(const DenseFPS &f, const T &scalar) {
return DenseFPS(f) += scalar;
}
DenseFPS &operator+=(const DenseFPS &other) {
if (size() < other.size()) coeff_.resize(other.size());
for (int i = 0; i < other.size(); ++i) coeff_[i] += other[i];
return *this;
}
friend DenseFPS operator+(const DenseFPS &f, const DenseFPS &g) {
return DenseFPS(f) += g;
}
DenseFPS &operator-=(const DenseFPS &other) {
if (size() < other.size()) coeff_.resize(other.size());
for (int i = 0; i < other.size(); ++i) coeff_[i] -= other[i];
return *this;
}
friend DenseFPS operator-(const DenseFPS &f, const DenseFPS &g) {
return DenseFPS(f) -= g;
}
DenseFPS operator-() const { return *this * -1; }
DenseFPS &operator*=(const T &scalar) {
for (auto &x: coeff_) x *= scalar;
return *this;
}
friend DenseFPS operator*(const DenseFPS &f, const T &scalar) {
return DenseFPS(f) *= scalar;
}
friend DenseFPS operator*(const T &scalar, const DenseFPS &g) {
return DenseFPS{scalar} *= g;
}
DenseFPS &operator*=(const DenseFPS &other) {
return *this =
DenseFPS(Mult::multiply(std::move(this->coeff_), other.coeff_));
}
friend DenseFPS operator*(const DenseFPS &f, const DenseFPS &g) {
return DenseFPS(Mult::multiply(f.coeff_, g.coeff_));
}
DenseFPS &operator/=(const T &scalar) {
for (auto &x: coeff_) x /= scalar;
return *this;
}
friend DenseFPS operator/(const DenseFPS &f, const T &scalar) {
return DenseFPS(f) /= scalar;
}
friend DenseFPS operator/(const T &scalar, const DenseFPS &g) {
return DenseFPS{scalar} /= g;
}
DenseFPS &operator/=(const DenseFPS &other) {
return *this *= DenseFPS(Mult::invert(other.coeff_));
}
friend DenseFPS operator/(const DenseFPS &f, const DenseFPS &g) {
return f * DenseFPS(Mult::invert(g.coeff_));
}
DenseFPS pow(i64 t) const {
assert(t >= 0);
DenseFPS res = {1}, base = *this;
while (t) {
if (t & 1) res *= base;
base *= base;
t >>= 1;
}
return res;
}
// Multiplies by (1 + c * x^k).
void multiply2_inplace(int k, int c) {
assert(k > 0);
if (size() <= dmax()) {
coeff_.resize(min(size() + k, dmax() + 1), 0);
}
for (int i = size() - 1; i >= k; --i) {
coeff_[i] += coeff_[i - k] * c;
}
}
// Multiplies by (1 + c * x^k).
DenseFPS multiply2(int k, int c) const {
DenseFPS res = *this;
res.multiply2_inplace(k, c);
return res;
}
// Divides by (1 + c * x^k).
void divide2_inplace(int k, int c) {
assert(k > 0);
for (int i = k; i < size(); ++i) {
coeff_[i] -= coeff_[i - k] * c;
}
}
// Divides by (1 + c * x^k).
DenseFPS divide2(int k, int c) const {
DenseFPS res = *this;
res.divide2_inplace(k, c);
return res;
}
// Multiplies by x^k.
void shift_inplace(int k) {
if (k > 0) {
if (size() <= dmax()) {
coeff_.resize(min(size() + k, dmax() + 1), 0);
}
for (int i = size() - 1; i >= k; --i) {
coeff_[i] = coeff_[i - k];
}
for (int i = k - 1; i >= 0; --i) {
coeff_[i] = 0;
}
} else if (k < 0) {
k *= -1;
for (int i = k; i < size(); ++i) {
coeff_[i - k] = coeff_[i];
}
for (int i = size() - k; i < size(); ++i) {
// If coefficients of degrees higher than dmax() were truncated
// beforehand, you lose the information. Ensure dmax() is big enough.
coeff_[i] = 0;
}
}
}
// Multiplies by x^k.
DenseFPS shift(int k) const {
DenseFPS res = *this;
res.shift_inplace(k);
return res;
}
T eval(const T &a) const {
T res = 0, x = 1;
for (auto c: coeff_) {
res += c * x;
x *= a;
}
return res;
}
};
using Real = double;
constexpr int D = 60;
using DF = DenseFPS<NaiveMult<Real, D>>;
auto solve() {
int n = in, K = in;
const Real d6 = 1 / 6.0;
const Real d3 = 1 / 3.0;
DF a = {0, d6, d6, d6, d6, d6, d6};
DF b = {0, 0, 0, 0, d3, d3, d3};
DF f = a.pow(n - K) * b.pow(K);
DF g = a.pow(n);
g.divide2_inplace(1, -1); // cumsum
Real ans = 0;
for (int i = 1; i <= D; ++i) {
ans += f[i] * g[i - 1];
}
return ans;
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(nullptr);
cout << std::fixed << std::setprecision(18);
const int T = 1;//in;
REP(t, T) {
auto ans = solve();
print(ans);
}
}
keijak