結果

問題 No.58 イカサマなサイコロ
ユーザー keijakkeijak
提出日時 2021-10-19 17:56:40
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 5,000 ms
コード長 9,111 bytes
コンパイル時間 2,703 ms
コンパイル使用メモリ 251,004 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-20 06:24:12
合計ジャッジ時間 3,257 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define REP_(i, a_, b_, a, b, ...) \
  for (int i = (a), END_##i = (b); i < END_##i; ++i)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(x) std::begin(x), std::end(x)
using i64 = long long;

template<typename T, typename U>
inline bool chmax(T &a, U b) {
  return a < b and ((a = std::move(b)), true);
}
template<typename T, typename U>
inline bool chmin(T &a, U b) {
  return a > b and ((a = std::move(b)), true);
}
template<typename T>
inline int ssize(const T &a) {
  return (int) a.size();
}

template<class T>
inline std::ostream &print_one(const T &x, char endc) {
  if constexpr (std::is_same_v<T, bool>) {
    return std::cout << (x ? "Yes" : "No") << endc;
  } else {
    return std::cout << x << endc;
  }
}
template<class T>
inline std::ostream &print(const T &x) { return print_one(x, '\n'); }
template<typename T, typename... Ts>
std::ostream &print(const T &head, Ts... tail) {
  return print_one(head, ' '), print(tail...);
}
inline std::ostream &print() { return std::cout << '\n'; }

template<typename Container>
std::ostream &print_seq(const Container &a, std::string_view sep = " ",
                        std::string_view ends = "\n",
                        std::ostream &os = std::cout) {
  auto b = std::begin(a), e = std::end(a);
  for (auto it = std::begin(a); it != e; ++it) {
    if (it != b) os << sep;
    os << *it;
  }
  return os << ends;
}

template<typename T, typename = void>
struct is_iterable : std::false_type {};
template<typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
                                  decltype(std::end(std::declval<T>()))>>
    : std::true_type {
};

template<typename T, typename = std::enable_if_t<
    is_iterable<T>::value && !std::is_same<T, std::string>::value>>
std::ostream &operator<<(std::ostream &os, const T &a) {
  return print_seq(a, ", ", "", (os << "{")) << "}";
}

struct CastInput {
  template<typename T>
  operator T() const {
    T x;
    std::cin >> x;
    return x;
  }
  struct Sized {
    std::size_t n;
    template<typename T>
    operator T() const {
      T x(n);
      for (auto &e: x) std::cin >> e;
      return x;
    }
  };
  Sized operator()(std::size_t n) const { return {n}; }
} const in;

inline void check(bool cond, const char *message = "!ERROR!") {
  if (not cond) throw std::runtime_error(message);
}

#ifdef MY_DEBUG
#include "debug_dump.hpp"
#else
#define DUMP(...)
#define cerr if(false)std::cerr
#endif

using namespace std;

template<typename T, int DMAX>
struct NaiveMult {
  using value_type = T;
  static constexpr int dmax() { return DMAX; }

  static std::vector<T> multiply(const std::vector<T> &x,
                                 const std::vector<T> &y) {
    const int n = std::min<int>(x.size() + y.size() - 1, DMAX + 1);
    const int mi = std::min<int>(x.size(), n);
    std::vector<T> res(n);
    for (int i = 0; i < mi; ++i) {
      for (int j = 0; j < int(y.size()); ++j) {
        if (i + j >= n) break;
        res[i + j] += x[i] * y[j];
      }
    }
    return res;
  }

  static std::vector<T> invert(const std::vector<T> &x) {
    std::vector<T> res(DMAX + 1);
    res[0] = x[0].inv();
    for (int i = 1; i <= DMAX; ++i) {
      T s = 0;
      const int mj = std::min<int>(i + 1, x.size());
      for (int j = 1; j < mj; ++j) {
        s += x[j] * res[i - j];
      }
      res[i] = -res[0] * s;
    }
    return res;
  }
};

// Formal Power Series (dense format).
template<typename Mult>
struct DenseFPS {
  using T = typename Mult::value_type;
  static constexpr int dmax() { return Mult::dmax(); }

  // Coefficients of terms from x^0 to x^DMAX.
  std::vector<T> coeff_;

  DenseFPS() : coeff_(1, 0) {}  // = 0 * x^0

  explicit DenseFPS(std::vector<T> c) : coeff_(std::move(c)) {
    while (size() > dmax() + 1) coeff_.pop_back();
    assert(size() > 0);
  }
  DenseFPS(std::initializer_list<T> init) : coeff_(init.begin(), init.end()) {
    while (size() > dmax() + 1) coeff_.pop_back();
    assert(size() > 0);
  }

  DenseFPS(const DenseFPS &other) : coeff_(other.coeff_) {}
  DenseFPS(DenseFPS &&other) : coeff_(std::move(other.coeff_)) {}
  DenseFPS &operator=(const DenseFPS &other) {
    coeff_ = other.coeff_;
    return *this;
  }
  DenseFPS &operator=(DenseFPS &&other) {
    coeff_ = std::move(other.coeff_);
    return *this;
  }

  // size <= dmax + 1
  inline int size() const { return static_cast<int>(coeff_.size()); }

  // Returns the coefficient of x^k.
  inline T operator[](int k) const { return (k >= size()) ? 0 : coeff_[k]; }

  DenseFPS &operator+=(const T &scalar) {
    coeff_[0] += scalar;
    return *this;
  }
  friend DenseFPS operator+(const DenseFPS &f, const T &scalar) {
    return DenseFPS(f) += scalar;
  }
  DenseFPS &operator+=(const DenseFPS &other) {
    if (size() < other.size()) coeff_.resize(other.size());
    for (int i = 0; i < other.size(); ++i) coeff_[i] += other[i];
    return *this;
  }
  friend DenseFPS operator+(const DenseFPS &f, const DenseFPS &g) {
    return DenseFPS(f) += g;
  }

  DenseFPS &operator-=(const DenseFPS &other) {
    if (size() < other.size()) coeff_.resize(other.size());
    for (int i = 0; i < other.size(); ++i) coeff_[i] -= other[i];
    return *this;
  }
  friend DenseFPS operator-(const DenseFPS &f, const DenseFPS &g) {
    return DenseFPS(f) -= g;
  }

  DenseFPS operator-() const { return *this * -1; }

  DenseFPS &operator*=(const T &scalar) {
    for (auto &x: coeff_) x *= scalar;
    return *this;
  }
  friend DenseFPS operator*(const DenseFPS &f, const T &scalar) {
    return DenseFPS(f) *= scalar;
  }
  friend DenseFPS operator*(const T &scalar, const DenseFPS &g) {
    return DenseFPS{scalar} *= g;
  }
  DenseFPS &operator*=(const DenseFPS &other) {
    return *this =
               DenseFPS(Mult::multiply(std::move(this->coeff_), other.coeff_));
  }
  friend DenseFPS operator*(const DenseFPS &f, const DenseFPS &g) {
    return DenseFPS(Mult::multiply(f.coeff_, g.coeff_));
  }

  DenseFPS &operator/=(const T &scalar) {
    for (auto &x: coeff_) x /= scalar;
    return *this;
  }
  friend DenseFPS operator/(const DenseFPS &f, const T &scalar) {
    return DenseFPS(f) /= scalar;
  }
  friend DenseFPS operator/(const T &scalar, const DenseFPS &g) {
    return DenseFPS{scalar} /= g;
  }
  DenseFPS &operator/=(const DenseFPS &other) {
    return *this *= DenseFPS(Mult::invert(other.coeff_));
  }
  friend DenseFPS operator/(const DenseFPS &f, const DenseFPS &g) {
    return f * DenseFPS(Mult::invert(g.coeff_));
  }

  DenseFPS pow(i64 t) const {
    assert(t >= 0);
    DenseFPS res = {1}, base = *this;
    while (t) {
      if (t & 1) res *= base;
      base *= base;
      t >>= 1;
    }
    return res;
  }

  // Multiplies by (1 + c * x^k).
  void multiply2_inplace(int k, int c) {
    assert(k > 0);
    if (size() <= dmax()) {
      coeff_.resize(min(size() + k, dmax() + 1), 0);
    }
    for (int i = size() - 1; i >= k; --i) {
      coeff_[i] += coeff_[i - k] * c;
    }
  }
  // Multiplies by (1 + c * x^k).
  DenseFPS multiply2(int k, int c) const {
    DenseFPS res = *this;
    res.multiply2_inplace(k, c);
    return res;
  }

  // Divides by (1 + c * x^k).
  void divide2_inplace(int k, int c) {
    assert(k > 0);
    for (int i = k; i < size(); ++i) {
      coeff_[i] -= coeff_[i - k] * c;
    }
  }
  // Divides by (1 + c * x^k).
  DenseFPS divide2(int k, int c) const {
    DenseFPS res = *this;
    res.divide2_inplace(k, c);
    return res;
  }

  // Multiplies by x^k.
  void shift_inplace(int k) {
    if (k > 0) {
      if (size() <= dmax()) {
        coeff_.resize(min(size() + k, dmax() + 1), 0);
      }
      for (int i = size() - 1; i >= k; --i) {
        coeff_[i] = coeff_[i - k];
      }
      for (int i = k - 1; i >= 0; --i) {
        coeff_[i] = 0;
      }
    } else if (k < 0) {
      k *= -1;
      for (int i = k; i < size(); ++i) {
        coeff_[i - k] = coeff_[i];
      }
      for (int i = size() - k; i < size(); ++i) {
        // If coefficients of degrees higher than dmax() were truncated
        // beforehand, you lose the information. Ensure dmax() is big enough.
        coeff_[i] = 0;
      }
    }
  }
  // Multiplies by x^k.
  DenseFPS shift(int k) const {
    DenseFPS res = *this;
    res.shift_inplace(k);
    return res;
  }

  T eval(const T &a) const {
    T res = 0, x = 1;
    for (auto c: coeff_) {
      res += c * x;
      x *= a;
    }
    return res;
  }
};
using Real = double;
constexpr int D = 60;
using DF = DenseFPS<NaiveMult<Real, D>>;

auto solve() {
  int n = in, K = in;
  const Real d6 = 1 / 6.0;
  const Real d3 = 1 / 3.0;
  DF a = {0, d6, d6, d6, d6, d6, d6};
  DF b = {0, 0, 0, 0, d3, d3, d3};
  DF f = a.pow(n - K) * b.pow(K);
  DF g = a.pow(n);
  g.divide2_inplace(1, -1);  // cumsum
  Real ans = 0;
  for (int i = 1; i <= D; ++i) {
    ans += f[i] * g[i - 1];
  }
  return ans;
}

int main() {
  ios_base::sync_with_stdio(false), cin.tie(nullptr);
  cout << std::fixed << std::setprecision(18);
  const int T = 1;//in;
  REP(t, T) {
    auto ans = solve();
    print(ans);
  }
}
0