結果
問題 | No.665 Bernoulli Bernoulli |
ユーザー | snrnsidy |
提出日時 | 2021-10-22 20:18:45 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,531 bytes |
コンパイル時間 | 2,517 ms |
コンパイル使用メモリ | 220,104 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-23 02:15:15 |
合計ジャッジ時間 | 16,806 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
コンパイルメッセージ
main.cpp: In function 'std::vector<int> berlekamp_massey(std::vector<int>)': main.cpp:31:44: warning: 'ld' may be used uninitialized [-Wmaybe-uninitialized] 31 | lint k = -(x[i] - t) * ipow(ld, mod - 2) % mod; | ~~~~^~~~~~~~~~~~~ main.cpp:18:17: note: 'ld' was declared here 18 | int lf, ld; | ^~ main.cpp:32:32: warning: 'lf' may be used uninitialized [-Wmaybe-uninitialized] 32 | vector<int> c(i-lf-1); | ~^~~ main.cpp:18:13: note: 'lf' was declared here 18 | int lf, ld; | ^~
ソースコード
#include <bits/stdc++.h> using namespace std; const long long int mod = 1e9 + 7; using lint = long long; lint ipow(lint x, lint p){ lint ret = 1, piv = x; while(p){ if(p & 1) ret = ret * piv % mod; piv = piv * piv % mod; p >>= 1; } return ret; } vector<int> berlekamp_massey(vector<int> x){ vector<int> ls, cur; int lf, ld; for(int i=0; i<x.size(); i++){ lint t = 0; for(int j=0; j<cur.size(); j++){ t = (t + 1ll * x[i-j-1] * cur[j]) % mod; } if((t - x[i]) % mod == 0) continue; if(cur.empty()){ cur.resize(i+1); lf = i; ld = (t - x[i]) % mod; continue; } lint k = -(x[i] - t) * ipow(ld, mod - 2) % mod; vector<int> c(i-lf-1); c.push_back(k); for(auto &j : ls) c.push_back(-j * k % mod); if(c.size() < cur.size()) c.resize(cur.size()); for(int j=0; j<cur.size(); j++){ c[j] = (c[j] + cur[j]) % mod; } if(i-lf+(int)ls.size()>=(int)cur.size()){ tie(ls, lf, ld) = make_tuple(cur, i, (t - x[i]) % mod); } cur = c; } for(auto &i : cur) i = (i % mod + mod) % mod; return cur; } int get_nth(vector<int> rec, vector<int> dp, lint n){ int m = rec.size(); vector<int> s(m), t(m); s[0] = 1; if(m != 1) t[1] = 1; else t[0] = rec[0]; auto mul = [&rec](vector<int> v, vector<int> w){ int m = v.size(); vector<int> t(2 * m); for(int j=0; j<m; j++){ for(int k=0; k<m; k++){ t[j+k] += 1ll * v[j] * w[k] % mod; if(t[j+k] >= mod) t[j+k] -= mod; } } for(int j=2*m-1; j>=m; j--){ for(int k=1; k<=m; k++){ t[j-k] += 1ll * t[j] * rec[k-1] % mod; if(t[j-k] >= mod) t[j-k] -= mod; } } t.resize(m); return t; }; while(n){ if(n & 1) s = mul(s, t); t = mul(t, t); n >>= 1; } lint ret = 0; for(int i=0; i<m; i++) ret += 1ll * s[i] * dp[i] % mod; return ret % mod; } int guess_nth_term(vector<int> x, lint n){ if(n < x.size()) return x[n]; vector<int> v = berlekamp_massey(x); if(v.empty()) return 0; return get_nth(v, x, n); } struct elem{int x, y, v;}; // A_(x, y) <- v, 0-based. no duplicate please.. vector<int> get_min_poly(int n, vector<elem> M){ // smallest poly P such that A^i = sum_{j < i} {A^j \times P_j} vector<int> rnd1, rnd2; mt19937 rng(0x14004); auto randint = [&rng](int lb, int ub){ return uniform_int_distribution<int>(lb, ub)(rng); }; for(int i=0; i<n; i++){ rnd1.push_back(randint(1, mod - 1)); rnd2.push_back(randint(1, mod - 1)); } vector<int> gobs; for(int i=0; i<2*n+2; i++){ int tmp = 0; for(int j=0; j<n; j++){ tmp += 1ll * rnd2[j] * rnd1[j] % mod; if(tmp >= mod) tmp -= mod; } gobs.push_back(tmp); vector<int> nxt(n); for(auto &i : M){ nxt[i.x] += 1ll * i.v * rnd1[i.y] % mod; if(nxt[i.x] >= mod) nxt[i.x] -= mod; } rnd1 = nxt; } auto sol = berlekamp_massey(gobs); reverse(sol.begin(), sol.end()); return sol; } lint det(int n, vector<elem> M){ vector<int> rnd; mt19937 rng(0x14004); auto randint = [&rng](int lb, int ub){ return uniform_int_distribution<int>(lb, ub)(rng); }; for(int i=0; i<n; i++) rnd.push_back(randint(1, mod - 1)); for(auto &i : M){ i.v = 1ll * i.v * rnd[i.y] % mod; } auto sol = get_min_poly(n, M)[0]; if(n % 2 == 0) sol = mod - sol; for(auto &i : rnd) sol = 1ll * sol * ipow(i, mod - 2) % mod; return sol; } int main(void) { cin.tie(0); ios::sync_with_stdio(false); long long int n,k; cin >> n >> k; vector <int> v; v.push_back(0); for(int i=1;i<=3000;i++) { long long int val = ipow(i,k); val += v.back(); val%=mod; v.push_back(val); } cout << guess_nth_term(v,n) << '\n'; return 0; }