結果

問題 No.1718 Random Squirrel
ユーザー 👑 emthrmemthrm
提出日時 2021-10-22 23:49:21
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 10,347 bytes
コンパイル時間 3,317 ms
コンパイル使用メモリ 240,764 KB
実行使用メモリ 56,828 KB
最終ジャッジ日時 2024-09-24 07:04:15
合計ジャッジ時間 8,431 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,812 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 WA -
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 107 ms
33,236 KB
testcase_12 RE -
testcase_13 WA -
testcase_14 WA -
testcase_15 RE -
testcase_16 RE -
testcase_17 AC 101 ms
31,636 KB
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 AC 181 ms
45,900 KB
testcase_22 WA -
testcase_23 RE -
testcase_24 AC 175 ms
46,028 KB
testcase_25 RE -
testcase_26 AC 89 ms
47,404 KB
testcase_27 AC 93 ms
47,400 KB
testcase_28 AC 88 ms
47,404 KB
testcase_29 AC 103 ms
51,248 KB
testcase_30 AC 113 ms
56,704 KB
testcase_31 AC 109 ms
56,828 KB
testcase_32 AC 106 ms
51,356 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

struct EulerTour {
  std::vector<int> tour, left, right, down, up, depth;

  EulerTour(const std::vector<std::vector<int>> &graph, int root = 0) : graph(graph) {
    int n = graph.size();
    left.resize(n);
    right.resize(n);
    down.assign(n, -1);
    up.assign(n, (n - 1) << 1);
    int idx = 0;
    dfs(-1, root, 0, idx);
  }

  template <typename Fn>
  void v_update(int ver, Fn f) const { f(left[ver], right[ver] + 1); }

  template <typename T, typename Fn>
  T v_query(int ver, Fn f) const { return f(left[ver], right[ver] + 1); }

  template <typename T, typename Fn>
  T e_query(int u, int v, Fn f) const { return f(down[u] + 1, down[v] + 1); }

  template <typename Fn>
  void subtree_e_update(int ver, Fn f) const { f(down[ver] + 1, up[ver]); }

  template <typename T, typename Fn>
  T subtree_e_query(int ver, Fn f) const { return f(down[ver] + 1, up[ver]); }

private:
  const std::vector<std::vector<int>> graph;

  void dfs(int par, int ver, int now_depth, int &idx) {
    left[ver] = tour.size();
    tour.emplace_back(ver);
    depth.emplace_back(now_depth);
    for (int e : graph[ver]) {
      if (e != par) {
        down[e] = idx++;
        dfs(ver, e, now_depth + 1, idx);
        tour.emplace_back(ver);
        depth.emplace_back(now_depth);
        up[e] = idx++;
      }
    }
    right[ver] = tour.size() - 1;
  }
};

struct LowestCommonAncestorByDoubling {
  std::vector<int> depth, dist;

  LowestCommonAncestorByDoubling(const std::vector<std::vector<int>> &graph) : graph(graph) {
    n = graph.size();
    depth.resize(n);
    dist.resize(n);
    while ((1 << table_h) <= n) ++table_h;
    parent.resize(table_h, std::vector<int>(n));
  }

  void build(int root = 0) {
    is_built = true;
    dfs(-1, root, 0, 0);
    for (int i = 0; i + 1 < table_h; ++i) for (int ver = 0; ver < n; ++ver) {
      parent[i + 1][ver] = parent[i][ver] == -1 ? -1 : parent[i][parent[i][ver]];
    }
  }

  int query(int u, int v) const {
    assert(is_built);
    if (depth[u] > depth[v]) std::swap(u, v);
    for (int i = 0; i < table_h; ++i) {
      if ((depth[v] - depth[u]) >> i & 1) v = parent[i][v];
    }
    if (u == v) return u;
    for (int i = table_h - 1; i >= 0; --i) {
      if (parent[i][u] != parent[i][v]) {
        u = parent[i][u];
        v = parent[i][v];
      }
    }
    return parent[0][u];
  }

  int distance(int u, int v) const {
    assert(is_built);
    return dist[u] + dist[v] - dist[query(u, v)] * 2;
  }

private:
  bool is_built = false;
  int n, table_h = 1;
  std::vector<std::vector<int>> graph, parent;

  void dfs(int par, int ver, int now_depth, int now_dist) {
    depth[ver] = now_depth;
    dist[ver] = now_dist;
    parent[0][ver] = par;
    for (int e : graph[ver]) {
      if (e != par) dfs(ver, e, now_depth + 1, now_dist + 1);
    }
  }
};

struct HeavyLightDecomposition {
  std::vector<int> parent, subtree, id, inv, head;

  HeavyLightDecomposition(const std::vector<std::vector<int>> &graph, int root = 0) : graph(graph) {
    int n = graph.size();
    parent.assign(n, -1);
    subtree.assign(n, 1);
    id.resize(n);
    inv.resize(n);
    head.resize(n);
    dfs1(root);
    head[root] = root;
    int now_id = 0;
    dfs2(root, now_id);
  }

  template <typename Fn>
  void v_update(int u, int v, Fn f) const {
    while (true) {
      if (id[u] > id[v]) std::swap(u, v);
      f(std::max(id[head[v]], id[u]), id[v] + 1);
      if (head[u] == head[v]) return;
      v = parent[head[v]];
    }
  }

  template <typename T, typename F, typename G>
  T v_query(int u, int v, F f, G g, const T ID) const {
    T left = ID, right = ID;
    while (true) {
      if (id[u] > id[v]) {
        std::swap(u, v);
        std::swap(left, right);
      }
      left = g(left, f(std::max(id[head[v]], id[u]), id[v] + 1));
      if (head[u] == head[v]) break;
      v = parent[head[v]];
    }
    return g(left, right);
  }

  template <typename Fn>
  void subtree_v_update(int ver, Fn f) const { f(id[ver], id[ver] + subtree[ver]); }

  template <typename T, typename Fn>
  T subtree_v_query(int ver, Fn f) const { return f(id[ver], id[ver] + subtree[ver]); }

  template <typename Fn>
  void e_update(int u, int v, Fn f) const {
    while (true) {
      if (id[u] > id[v]) std::swap(u, v);
      if (head[u] == head[v]) {
        f(id[u], id[v]);
        break;
      } else {
        f(id[head[v]] - 1, id[v]);
        v = parent[head[v]];
      }
    }
  }

  template <typename T, typename F, typename G>
  T e_query(int u, int v, F f, G g, const T ID) const {
    T left = ID, right = ID;
    while (true) {
      if (id[u] > id[v]) {
        std::swap(u, v);
        std::swap(left, right);
      }
      if (head[u] == head[v]) {
        left = g(left, f(id[u], id[v]));
        break;
      } else {
        left = g(left, f(id[head[v]] - 1, id[v]));
        v = parent[head[v]];
      }
    }
    return g(left, right);
  }

  template <typename Fn>
  void subtree_e_update(int ver, Fn f) const { f(id[ver], id[ver] + subtree[ver] - 1); }

  template <typename T, typename Fn>
  T subtree_e_query(int ver, Fn f) const { return f(id[ver], id[ver] + subtree[ver] - 1); }

  int lowest_common_ancestor(int u, int v) const {
    while (true) {
      if (id[u] > id[v]) std::swap(u, v);
      if (head[u] == head[v]) return u;
      v = parent[head[v]];
    }
  }

private:
  std::vector<std::vector<int>> graph;

  void dfs1(int ver) {
    for (int &e : graph[ver]) {
      if (e != parent[ver]) {
        parent[e] = ver;
        dfs1(e);
        subtree[ver] += subtree[e];
        if (subtree[e] > subtree[graph[ver].front()]) std::swap(e, graph[ver].front());
      }
    }
  }

  void dfs2(int ver, int &now_id) {
    id[ver] = now_id++;
    inv[id[ver]] = ver;
    for (int e : graph[ver]) {
      if (e != parent[ver]) {
        head[e] = (e == graph[ver].front() ? head[ver] : e);
        dfs2(e, now_id);
      }
    }
  }
};

template <typename Abelian>
struct FenwickTreeSupportingRangeAddQuery {
  FenwickTreeSupportingRangeAddQuery(int n_, const Abelian ID = 0) : n(n_), ID(ID) {
    ++n;
    dat_const.assign(n, ID);
    dat_linear.assign(n, ID);
  }

  void add(int left, int right, Abelian val) {
    if (right < ++left) return;
    for (int i = left; i < n; i += i & -i) {
      dat_const[i] -= val * (left - 1);
      dat_linear[i] += val;
    }
    for (int i = right + 1; i < n; i += i & -i) {
      dat_const[i] += val * right;
      dat_linear[i] -= val;
    }
  }

  Abelian sum(int idx) const {
    Abelian res = ID;
    for (int i = idx; i > 0; i -= i & -i) res += dat_linear[i];
    res *= idx;
    for (int i = idx; i > 0; i -= i & -i) res += dat_const[i];
    return res;
  }

  Abelian sum(int left, int right) const {
    return left < right ? sum(right) - sum(left) : ID;
  }

  Abelian operator[](const int idx) const { return sum(idx, idx + 1); }

private:
  int n;
  const Abelian ID;
  std::vector<Abelian> dat_const, dat_linear;
};

int main() {
  int n, k; cin >> n >> k;
  vector<vector<int>> graph(n);
  REP(_, n - 1) {
    int u, v; cin >> u >> v; --u; --v;
    graph[u].emplace_back(v);
    graph[v].emplace_back(u);
  }
  vector<int> d(k); REP(i, k) cin >> d[i], --d[i];
  EulerTour euler_tour(graph, d.front());
  sort(ALL(d), [&](int a, int b) -> bool { return euler_tour.left[a] < euler_tour.right[b]; });
  // REP(i, k) cerr << d[i] << " \n"[i + 1 == k];
  LowestCommonAncestorByDoubling lca(graph);
  lca.build(d.front());
  ll steiner = 0;
  REP(i, k) steiner += lca.distance(d[i], d[(i + 1) % k]);
  // cerr << steiner << '\n';
  HeavyLightDecomposition hld(graph, d.front());
  FenwickTreeSupportingRangeAddQuery<ll> bit(n);
  REP(i, k) hld.v_update(d[i], d[(i + 1) % k], [&](int u, int v) -> void { bit.add(u, v, 1); });
  vector<int> dist(n, -1), from(n, -1);
  queue<int> que;
  REP(i, n) {
    if (bit[hld.id[i]] > 0) {
      dist[i] = 0;
      from[i] = i;
      que.emplace(i);
    }
  }
  while (!que.empty()) {
    int ver = que.front(); que.pop();
    for (int e : graph[ver]) {
      if (dist[e] == -1) {
        dist[e] = dist[ver] + 1;
        from[e] = from[ver];
        que.emplace(e);
      }
    }
  }
  // REP(i, n) cerr << dist[i] << " \n"[i + 1 == n];
  vector<int> has_acorn(n, false);
  REP(i, k) has_acorn[d[i]] = true;
  vector<vector<pair<int, int>>> child(n);
  auto f = [&](auto&& f, int par, int ver) -> void {
    for (int e : graph[ver]) {
      if (e == par) continue;
      f(f, ver, e);
      if (!child[e].empty()) {
        child[ver].emplace_back(child[e].front().first + 1, e);
      } else if (has_acorn[e]) {
        child[ver].emplace_back(1, e);
      }
    }
    sort(ALL(child[ver]), greater{});
  };
  f(f, -1, d.front());
  auto g = [&](auto&& g, int par, int ver, int pd) -> void {
    if (par != -1) {
      child[ver].emplace_back(pd, par);
      sort(ALL(child[ver]), greater{});
    }
    for (int e : graph[ver]) {
      if (e == par) continue;
      if (child[ver].empty()) {
        assert(has_acorn[ver]);
        g(g, ver, e, 1);
      } else if (child[ver].front().second == e) {
        if (child[ver].size() == 1) {
          assert(has_acorn[ver]);
          g(g, ver, e, 1);
        } else {
          g(g, ver, e, child[ver][1].first + 1);
        }
      } else {
        g(g, ver, e, child[ver].front().first + 1);
      }
    }
  };
  g(g, -1, d.front(), 0);
  REP(i, n) cout << steiner + dist[i] - (child[from[i]].empty() ? 0 : child[from[i]].front().first) << '\n';
  return 0;
}
0