結果
問題 | No.619 CardShuffle |
ユーザー |
|
提出日時 | 2021-11-01 10:47:04 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 65 ms / 3,000 ms |
コード長 | 8,729 bytes |
コンパイル時間 | 16,361 ms |
コンパイル使用メモリ | 407,012 KB |
実行使用メモリ | 8,828 KB |
最終ジャッジ日時 | 2024-10-09 21:41:23 |
合計ジャッジ時間 | 20,644 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 35 |
ソースコード
#[allow(unused_imports)]use std::cmp::*;#[allow(unused_imports)]use std::collections::*;use std::io::{Write, BufWriter};// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, chars) => {read_value!($next, String).chars().collect::<Vec<char>>()};($next:expr, usize1) => (read_value!($next, usize) - 1);($next:expr, [ $t:tt ]) => {{let len = read_value!($next, usize);read_value!($next, [$t; len])}};($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}/*** Segment Tree. This data structure is useful for fast folding on intervals of an array* whose elements are elements of monoid I. Note that constructing this tree requires the identity* element of I and the operation of I.* Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581)* AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001)* yukicoder No. 833 (https://yukicoder.me/submissions/703521)*/struct SegTree<I, BiOp> {n: usize,dat: Vec<I>,op: BiOp,e: I,}impl<I, BiOp> SegTree<I, BiOp>where BiOp: Fn(I, I) -> I,I: Copy {pub fn new(n_: usize, op: BiOp, e: I) -> Self {let mut n = 1;while n < n_ { n *= 2; } // n is a power of 2SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e}}/* ary[k] <- v */pub fn update(&mut self, idx: usize, v: I) {let mut k = idx + self.n - 1;self.dat[k] = v;while k > 0 {k = (k - 1) / 2;self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]);}}/* [a, b) (note: half-inclusive)* http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */#[allow(unused)]pub fn query(&self, mut a: usize, mut b: usize) -> I {let mut left = self.e;let mut right = self.e;a += self.n - 1;b += self.n - 1;while a < b {if (a & 1) == 0 {left = (self.op)(left, self.dat[a]);}if (b & 1) == 0 {right = (self.op)(self.dat[b - 1], right);}a = a / 2;b = (b - 1) / 2;}(self.op)(left, right)}}/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 1_000_000_007;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;fn main() {let out = std::io::stdout();let mut out = BufWriter::new(out.lock());macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}input! {n: usize,c: [char; n],q: usize,txy: [(char, usize1, usize1); q],}let mut c = c;c.push('+');let mut st = SegTree::new(n / 2 + 1, |x: Option<Result<(MInt, MInt, MInt), MInt>>, y| {match (x, y) {(None, y) => y,(x, None) => x,(Some(x), Some(y)) => match (x, y) {(Ok((a, b, c)), Ok((d, e, f))) =>Some(Ok((a, b + c * d + e, f))),(Ok((a, b, c)), Err(y)) =>Some(Ok((a, b, c * y))),(Err(x), Ok((d, e, f))) =>Some(Ok((x * d, e, f))),(Err(x), Err(y)) => Some(Err(x * y)),}}}, None);let to = |x: &[char]| {let a = MInt::new((x[0] as u8 - b'0') as i64);if x[1] == '+' {Some(Ok((a, 0.into(), 1.into())))} else {Some(Err(a))}};for i in 0..n / 2 + 1 {st.update(i, to(&c[i * 2..i * 2 + 2]));}for (t, x, y) in txy {if t == '!' {c.swap(x, y);st.update(x / 2, to(&c[x / 2 * 2..x / 2 * 2 + 2]));st.update(y / 2, to(&c[y / 2 * 2..y / 2 * 2 + 2]));} else {let ans = st.query(x / 2, y / 2 + 1).unwrap();let ans = match ans {Ok((a, b, cc)) => a + b + if c[y + 1] == '+' {0.into()} else {cc},Err(x) => x,};puts!("{}\n", ans);}}}