結果
問題 | No.619 CardShuffle |
ユーザー | koba-e964 |
提出日時 | 2021-11-01 10:47:04 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 65 ms / 3,000 ms |
コード長 | 8,729 bytes |
コンパイル時間 | 16,361 ms |
コンパイル使用メモリ | 407,012 KB |
実行使用メモリ | 8,828 KB |
最終ジャッジ日時 | 2024-10-09 21:41:23 |
合計ジャッジ時間 | 20,644 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,820 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,816 KB |
testcase_03 | AC | 1 ms
6,820 KB |
testcase_04 | AC | 1 ms
6,820 KB |
testcase_05 | AC | 1 ms
6,816 KB |
testcase_06 | AC | 1 ms
6,816 KB |
testcase_07 | AC | 1 ms
6,820 KB |
testcase_08 | AC | 1 ms
6,820 KB |
testcase_09 | AC | 1 ms
6,816 KB |
testcase_10 | AC | 1 ms
6,816 KB |
testcase_11 | AC | 1 ms
6,820 KB |
testcase_12 | AC | 1 ms
6,820 KB |
testcase_13 | AC | 1 ms
6,820 KB |
testcase_14 | AC | 1 ms
6,816 KB |
testcase_15 | AC | 1 ms
6,820 KB |
testcase_16 | AC | 64 ms
8,708 KB |
testcase_17 | AC | 62 ms
8,660 KB |
testcase_18 | AC | 65 ms
8,708 KB |
testcase_19 | AC | 62 ms
8,700 KB |
testcase_20 | AC | 61 ms
8,700 KB |
testcase_21 | AC | 63 ms
8,676 KB |
testcase_22 | AC | 60 ms
8,688 KB |
testcase_23 | AC | 62 ms
8,740 KB |
testcase_24 | AC | 60 ms
8,680 KB |
testcase_25 | AC | 59 ms
8,688 KB |
testcase_26 | AC | 63 ms
8,692 KB |
testcase_27 | AC | 63 ms
8,788 KB |
testcase_28 | AC | 63 ms
8,828 KB |
testcase_29 | AC | 61 ms
8,776 KB |
testcase_30 | AC | 59 ms
8,612 KB |
testcase_31 | AC | 1 ms
6,820 KB |
testcase_32 | AC | 61 ms
8,788 KB |
testcase_33 | AC | 64 ms
8,652 KB |
testcase_34 | AC | 57 ms
8,636 KB |
testcase_35 | AC | 24 ms
6,816 KB |
ソースコード
#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); read_value!($next, [$t; len]) }}; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /** * Segment Tree. This data structure is useful for fast folding on intervals of an array * whose elements are elements of monoid I. Note that constructing this tree requires the identity * element of I and the operation of I. * Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581) * AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001) * yukicoder No. 833 (https://yukicoder.me/submissions/703521) */ struct SegTree<I, BiOp> { n: usize, dat: Vec<I>, op: BiOp, e: I, } impl<I, BiOp> SegTree<I, BiOp> where BiOp: Fn(I, I) -> I, I: Copy { pub fn new(n_: usize, op: BiOp, e: I) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e} } /* ary[k] <- v */ pub fn update(&mut self, idx: usize, v: I) { let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]); } } /* [a, b) (note: half-inclusive) * http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */ #[allow(unused)] pub fn query(&self, mut a: usize, mut b: usize) -> I { let mut left = self.e; let mut right = self.e; a += self.n - 1; b += self.n - 1; while a < b { if (a & 1) == 0 { left = (self.op)(left, self.dat[a]); } if (b & 1) == 0 { right = (self.op)(self.dat[b - 1], right); } a = a / 2; b = (b - 1) / 2; } (self.op)(left, right) } } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 1_000_000_007; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; fn main() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););} input! { n: usize, c: [char; n], q: usize, txy: [(char, usize1, usize1); q], } let mut c = c; c.push('+'); let mut st = SegTree::new(n / 2 + 1, |x: Option<Result<(MInt, MInt, MInt), MInt>>, y| { match (x, y) { (None, y) => y, (x, None) => x, (Some(x), Some(y)) => match (x, y) { (Ok((a, b, c)), Ok((d, e, f))) => Some(Ok((a, b + c * d + e, f))), (Ok((a, b, c)), Err(y)) => Some(Ok((a, b, c * y))), (Err(x), Ok((d, e, f))) => Some(Ok((x * d, e, f))), (Err(x), Err(y)) => Some(Err(x * y)), } } }, None); let to = |x: &[char]| { let a = MInt::new((x[0] as u8 - b'0') as i64); if x[1] == '+' { Some(Ok((a, 0.into(), 1.into()))) } else { Some(Err(a)) } }; for i in 0..n / 2 + 1 { st.update(i, to(&c[i * 2..i * 2 + 2])); } for (t, x, y) in txy { if t == '!' { c.swap(x, y); st.update(x / 2, to(&c[x / 2 * 2..x / 2 * 2 + 2])); st.update(y / 2, to(&c[y / 2 * 2..y / 2 * 2 + 2])); } else { let ans = st.query(x / 2, y / 2 + 1).unwrap(); let ans = match ans { Ok((a, b, cc)) => a + b + if c[y + 1] == '+' { 0.into() } else { cc }, Err(x) => x, }; puts!("{}\n", ans); } } }