結果

問題 No.1339 循環小数
ユーザー koba-e964koba-e964
提出日時 2021-11-05 21:11:01
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 7 ms / 2,000 ms
コード長 5,413 bytes
コンパイル時間 15,427 ms
コンパイル使用メモリ 400,136 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-11-06 11:55:37
合計ジャッジ時間 15,468 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 1 ms
6,820 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 1 ms
6,820 KB
testcase_07 AC 1 ms
6,816 KB
testcase_08 AC 1 ms
6,820 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 1 ms
6,816 KB
testcase_11 AC 1 ms
6,820 KB
testcase_12 AC 1 ms
6,820 KB
testcase_13 AC 1 ms
6,820 KB
testcase_14 AC 2 ms
6,820 KB
testcase_15 AC 2 ms
6,820 KB
testcase_16 AC 2 ms
6,820 KB
testcase_17 AC 2 ms
6,816 KB
testcase_18 AC 2 ms
6,820 KB
testcase_19 AC 2 ms
6,820 KB
testcase_20 AC 2 ms
6,820 KB
testcase_21 AC 4 ms
6,820 KB
testcase_22 AC 4 ms
6,820 KB
testcase_23 AC 4 ms
6,824 KB
testcase_24 AC 4 ms
6,820 KB
testcase_25 AC 4 ms
6,816 KB
testcase_26 AC 4 ms
6,816 KB
testcase_27 AC 4 ms
6,816 KB
testcase_28 AC 4 ms
6,820 KB
testcase_29 AC 4 ms
6,816 KB
testcase_30 AC 4 ms
6,816 KB
testcase_31 AC 6 ms
6,820 KB
testcase_32 AC 7 ms
6,816 KB
testcase_33 AC 4 ms
6,816 KB
testcase_34 AC 3 ms
6,820 KB
testcase_35 AC 5 ms
6,816 KB
testcase_36 AC 4 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::Read;

#[allow(dead_code)]
fn getline() -> String {
    let mut ret = String::new();
    std::io::stdin().read_line(&mut ret).ok().unwrap();
    ret
}

fn get_word() -> String {
    let stdin = std::io::stdin();
    let mut stdin=stdin.lock();
    let mut u8b: [u8; 1] = [0];
    loop {
        let mut buf: Vec<u8> = Vec::with_capacity(16);
        loop {
            let res = stdin.read(&mut u8b);
            if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
                break;
            } else {
                buf.push(u8b[0]);
            }
        }
        if buf.len() >= 1 {
            let ret = String::from_utf8(buf).unwrap();
            return ret;
        }
    }
}

#[allow(dead_code)]
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }

// https://judge.yosupo.jp/submission/5155
mod pollard_rho {
    /// binary gcd
    pub fn gcd(mut x: i64, mut y: i64) -> i64 {
        if y == 0 { return x; }
        if x == 0 { return y; }
        let k = (x | y).trailing_zeros();
        y >>= k;
        x >>= x.trailing_zeros();
        while y != 0 {
            y >>= y.trailing_zeros();
            if x > y { let t = x; x = y; y = t; }
            y -= x;
        }
        x << k
    }

    fn add_mod(x: i64, y: i64, n: i64) -> i64 {
        let z = x + y;
        if z >= n { z - n } else { z }
    }

    fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 {
        assert!(x >= 0);
        assert!(x < n);
        let mut sum = 0;
        let mut cur = x;
        while y > 0 {
            if (y & 1) == 1 { sum = add_mod(sum, cur, n); }
            cur = add_mod(cur, cur, n);
            y >>= 1;
        }
        sum
    }

    pub fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 {
        let mut prod = if n == 1 { 0 } else { 1 };
        let mut cur = x % n;
        while e > 0 {
            if (e & 1) == 1 { prod = mul_mod(prod, cur, n); }
            e >>= 1;
            if e > 0 { cur = mul_mod(cur, cur, n); }
        }
        prod
    }

    pub fn is_prime(n: i64) -> bool {
        if n <= 1 { return false; }
        let small = [2, 3, 5, 7, 11, 13];
        if small.iter().any(|&u| u == n) { return true; }
        if small.iter().any(|&u| n % u == 0) { return false; }
        let mut d = n - 1;
        let e = d.trailing_zeros();
        d >>= e;
        // https://miller-rabin.appspot.com/
        let a = [2, 325, 9375, 28178, 450775, 9780504, 1795265022];
        a.iter().all(|&a| {
            if a % n == 0 { return true; }
            let mut x = mod_pow(a, d, n);
            if x == 1 { return true; }
            for _ in 0..e {
                if x == n - 1 {
                    return true;
                }
                x = mul_mod(x, x, n);
                if x == 1 { return false; }
            }
            x == 1
        })
    }

    fn pollard_rho(n: i64, c: &mut i64) -> i64 {
        // An improvement with Brent's cycle detection algorithm is performed.
        // https://maths-people.anu.edu.au/~brent/pub/pub051.html
        if n % 2 == 0 { return 2; }
        loop {
            let mut x: i64; // tortoise
            let mut y = 2; // hare
            let mut d = 1;
            let cc = *c;
            let f = |i| add_mod(mul_mod(i, i, n), cc, n);
            let mut r = 1;
            // We don't perform the gcd-once-in-a-while optimization
            // because the plain gcd-every-time algorithm appears to
            // outperform, at least on judge.yosupo.jp :)
            while d == 1 {
                x = y;
                for _ in 0..r {
                    y = f(y);
                    d = gcd((x - y).abs(), n);
                    if d != 1 { break; }
                }
                r *= 2;
            }
            if d == n {
                *c += 1;
                continue;
            }
            return d;
        }
    }

    /// Outputs (p, e) in p's ascending order.
    pub fn factorize(x: i64) -> Vec<(i64, usize)> {
        if x <= 1 { return vec![]; }
        let mut hm = std::collections::HashMap::new();
        let mut pool = vec![x];
        let mut c = 1;
        while let Some(u) = pool.pop() {
            if is_prime(u) {
                *hm.entry(u).or_insert(0) += 1;
                continue;
            }
            let p = pollard_rho(u, &mut c);
            pool.push(p);
            pool.push(u / p);
        }
        let mut v: Vec<_> = hm.into_iter().collect();
        v.sort();
        v
    }
} // mod pollard_rho

fn get_per(p: i64, e: usize) -> i64 {
    use pollard_rho::*;
    if p == 2 || p == 5 {
        return 1;
    }
    let facs = factorize(p - 1);
    let mut ans = p - 1;
    for &(q, _) in &facs {
        while ans % q == 0 && mod_pow(10, ans / q, p) == 1 {
            ans /= q;
        }
    }
    let mut x = p;
    for _ in 0..e - 1 {
        x *= p;
        ans *= p;
    }
    while ans % p == 0 && mod_pow(10, ans / p, x) == 1 {
        ans /= p;
    }
    ans
}

fn main() {
    use pollard_rho::*;
    let t: usize = get();
    for _ in 0..t {
        let n: i64 = get();
        let pe = factorize(n);
        let mut ans = 1;
        for (p, e) in pe {
            let per = get_per(p, e);
            let g = gcd(ans, per);
            ans /= g;
            ans *= per;
        }
        println!("{}", ans);
    }
}
0