結果

問題 No.1339 循環小数
ユーザー koba-e964
提出日時 2021-11-05 21:11:01
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 7 ms / 2,000 ms
コード長 5,413 bytes
コンパイル時間 15,427 ms
コンパイル使用メモリ 400,136 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-11-06 11:55:37
合計ジャッジ時間 15,468 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::Read;
#[allow(dead_code)]
fn getline() -> String {
let mut ret = String::new();
std::io::stdin().read_line(&mut ret).ok().unwrap();
ret
}
fn get_word() -> String {
let stdin = std::io::stdin();
let mut stdin=stdin.lock();
let mut u8b: [u8; 1] = [0];
loop {
let mut buf: Vec<u8> = Vec::with_capacity(16);
loop {
let res = stdin.read(&mut u8b);
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
break;
} else {
buf.push(u8b[0]);
}
}
if buf.len() >= 1 {
let ret = String::from_utf8(buf).unwrap();
return ret;
}
}
}
#[allow(dead_code)]
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }
// https://judge.yosupo.jp/submission/5155
mod pollard_rho {
/// binary gcd
pub fn gcd(mut x: i64, mut y: i64) -> i64 {
if y == 0 { return x; }
if x == 0 { return y; }
let k = (x | y).trailing_zeros();
y >>= k;
x >>= x.trailing_zeros();
while y != 0 {
y >>= y.trailing_zeros();
if x > y { let t = x; x = y; y = t; }
y -= x;
}
x << k
}
fn add_mod(x: i64, y: i64, n: i64) -> i64 {
let z = x + y;
if z >= n { z - n } else { z }
}
fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 {
assert!(x >= 0);
assert!(x < n);
let mut sum = 0;
let mut cur = x;
while y > 0 {
if (y & 1) == 1 { sum = add_mod(sum, cur, n); }
cur = add_mod(cur, cur, n);
y >>= 1;
}
sum
}
pub fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 {
let mut prod = if n == 1 { 0 } else { 1 };
let mut cur = x % n;
while e > 0 {
if (e & 1) == 1 { prod = mul_mod(prod, cur, n); }
e >>= 1;
if e > 0 { cur = mul_mod(cur, cur, n); }
}
prod
}
pub fn is_prime(n: i64) -> bool {
if n <= 1 { return false; }
let small = [2, 3, 5, 7, 11, 13];
if small.iter().any(|&u| u == n) { return true; }
if small.iter().any(|&u| n % u == 0) { return false; }
let mut d = n - 1;
let e = d.trailing_zeros();
d >>= e;
// https://miller-rabin.appspot.com/
let a = [2, 325, 9375, 28178, 450775, 9780504, 1795265022];
a.iter().all(|&a| {
if a % n == 0 { return true; }
let mut x = mod_pow(a, d, n);
if x == 1 { return true; }
for _ in 0..e {
if x == n - 1 {
return true;
}
x = mul_mod(x, x, n);
if x == 1 { return false; }
}
x == 1
})
}
fn pollard_rho(n: i64, c: &mut i64) -> i64 {
// An improvement with Brent's cycle detection algorithm is performed.
// https://maths-people.anu.edu.au/~brent/pub/pub051.html
if n % 2 == 0 { return 2; }
loop {
let mut x: i64; // tortoise
let mut y = 2; // hare
let mut d = 1;
let cc = *c;
let f = |i| add_mod(mul_mod(i, i, n), cc, n);
let mut r = 1;
// We don't perform the gcd-once-in-a-while optimization
// because the plain gcd-every-time algorithm appears to
// outperform, at least on judge.yosupo.jp :)
while d == 1 {
x = y;
for _ in 0..r {
y = f(y);
d = gcd((x - y).abs(), n);
if d != 1 { break; }
}
r *= 2;
}
if d == n {
*c += 1;
continue;
}
return d;
}
}
/// Outputs (p, e) in p's ascending order.
pub fn factorize(x: i64) -> Vec<(i64, usize)> {
if x <= 1 { return vec![]; }
let mut hm = std::collections::HashMap::new();
let mut pool = vec![x];
let mut c = 1;
while let Some(u) = pool.pop() {
if is_prime(u) {
*hm.entry(u).or_insert(0) += 1;
continue;
}
let p = pollard_rho(u, &mut c);
pool.push(p);
pool.push(u / p);
}
let mut v: Vec<_> = hm.into_iter().collect();
v.sort();
v
}
} // mod pollard_rho
fn get_per(p: i64, e: usize) -> i64 {
use pollard_rho::*;
if p == 2 || p == 5 {
return 1;
}
let facs = factorize(p - 1);
let mut ans = p - 1;
for &(q, _) in &facs {
while ans % q == 0 && mod_pow(10, ans / q, p) == 1 {
ans /= q;
}
}
let mut x = p;
for _ in 0..e - 1 {
x *= p;
ans *= p;
}
while ans % p == 0 && mod_pow(10, ans / p, x) == 1 {
ans /= p;
}
ans
}
fn main() {
use pollard_rho::*;
let t: usize = get();
for _ in 0..t {
let n: i64 = get();
let pe = factorize(n);
let mut ans = 1;
for (p, e) in pe {
let per = get_per(p, e);
let g = gcd(ans, per);
ans /= g;
ans *= per;
}
println!("{}", ans);
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0