結果

問題 No.1733 Sum of Sorted Subarrays
ユーザー rniyarniya
提出日時 2021-11-05 22:10:17
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 738 ms / 3,000 ms
コード長 14,152 bytes
コンパイル時間 2,751 ms
コンパイル使用メモリ 225,220 KB
実行使用メモリ 17,100 KB
最終ジャッジ日時 2024-11-06 13:00:02
合計ジャッジ時間 14,045 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 376 ms
10,240 KB
testcase_09 AC 589 ms
16,984 KB
testcase_10 AC 328 ms
10,240 KB
testcase_11 AC 432 ms
10,496 KB
testcase_12 AC 463 ms
16,752 KB
testcase_13 AC 483 ms
16,536 KB
testcase_14 AC 714 ms
17,100 KB
testcase_15 AC 655 ms
16,872 KB
testcase_16 AC 328 ms
10,240 KB
testcase_17 AC 697 ms
16,996 KB
testcase_18 AC 536 ms
16,676 KB
testcase_19 AC 567 ms
16,800 KB
testcase_20 AC 527 ms
16,672 KB
testcase_21 AC 619 ms
17,000 KB
testcase_22 AC 395 ms
10,368 KB
testcase_23 AC 738 ms
17,068 KB
testcase_24 AC 732 ms
17,084 KB
testcase_25 AC 737 ms
17,088 KB
testcase_26 AC 101 ms
13,132 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#pragma region Macros
typedef long long ll;
typedef __int128_t i128;
typedef unsigned int uint;
typedef unsigned long long ull;
#define ALL(x) (x).begin(), (x).end()

template <typename T> istream& operator>>(istream& is, vector<T>& v) {
    for (T& x : v) is >> x;
    return is;
}
template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {
    for (size_t i = 0; i < v.size(); i++) {
        os << v[i] << (i + 1 == v.size() ? "" : " ");
    }
    return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {
    os << '(' << p.first << ',' << p.second << ')';
    return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {
    os << '{';
    for (auto itr = m.begin(); itr != m.end();) {
        os << '(' << itr->first << ',' << itr->second << ')';
        if (++itr != m.end()) os << ',';
    }
    os << '}';
    return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {
    os << '{';
    for (auto itr = m.begin(); itr != m.end();) {
        os << '(' << itr->first << ',' << itr->second << ')';
        if (++itr != m.end()) os << ',';
    }
    os << '}';
    return os;
}
template <typename T> ostream& operator<<(ostream& os, const set<T>& s) {
    os << '{';
    for (auto itr = s.begin(); itr != s.end();) {
        os << *itr;
        if (++itr != s.end()) os << ',';
    }
    os << '}';
    return os;
}
template <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {
    os << '{';
    for (auto itr = s.begin(); itr != s.end();) {
        os << *itr;
        if (++itr != s.end()) os << ',';
    }
    os << '}';
    return os;
}
template <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {
    os << '{';
    for (auto itr = s.begin(); itr != s.end();) {
        os << *itr;
        if (++itr != s.end()) os << ',';
    }
    os << '}';
    return os;
}
template <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {
    for (size_t i = 0; i < v.size(); i++) {
        os << v[i] << (i + 1 == v.size() ? "" : " ");
    }
    return os;
}
template <typename T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v) {
    for (size_t i = 0; i < N; i++) {
        os << v[i] << (i + 1 == N ? "" : " ");
    }
    return os;
}

template <int i, typename T> void print_tuple(ostream&, const T&) {}
template <int i, typename T, typename H, class... Args> void print_tuple(ostream& os, const T& t) {
    if (i) os << ',';
    os << get<i>(t);
    print_tuple<i + 1, T, Args...>(os, t);
}
template <typename... Args> ostream& operator<<(ostream& os, const tuple<Args...>& t) {
    os << '{';
    print_tuple<0, tuple<Args...>, Args...>(os, t);
    return os << '}';
}

void debug_out() { cerr << '\n'; }
template <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {
    cerr << head;
    if (sizeof...(Tail) > 0) cerr << ", ";
    debug_out(move(tail)...);
}
#ifdef LOCAL
#define debug(...)                                                                   \
    cerr << " ";                                                                     \
    cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n'; \
    cerr << " ";                                                                     \
    debug_out(__VA_ARGS__)
#else
#define debug(...) void(0)
#endif

template <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }
template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }

int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
int botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }
int popcount(signed t) { return __builtin_popcount(t); }
int popcount(long long t) { return __builtin_popcountll(t); }
bool ispow2(int i) { return i && (i & -i) == i; }
long long MSK(int n) { return (1LL << n) - 1; }

template <class T> T ceil(T x, T y) {
    assert(y >= 1);
    return (x > 0 ? (x + y - 1) / y : x / y);
}
template <class T> T floor(T x, T y) {
    assert(y >= 1);
    return (x > 0 ? x / y : (x - y + 1) / y);
}

template <class T1, class T2> inline bool chmin(T1& a, T2 b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}
template <class T1, class T2> inline bool chmax(T1& a, T2 b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

template <typename T> void mkuni(vector<T>& v) {
    sort(v.begin(), v.end());
    v.erase(unique(v.begin(), v.end()), v.end());
}
template <typename T> int lwb(const vector<T>& v, const T& x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); }
#pragma endregion

#include <cassert>
#include <cstdint>
#include <iostream>

template <uint64_t Modulus> class modint {
    using i64 = int64_t;
    using u32 = uint32_t;
    using u64 = uint64_t;

    static_assert(Modulus < static_cast<uint32_t>(1) << 31, "Modulus must be less than 2**31");
    static constexpr u32 mod = Modulus;
    u32 v;

public:
    constexpr modint(const i64 x = 0) noexcept : v(x < 0 ? mod - 1 - (-(x + 1) % mod) : x % mod) {}
    constexpr u32& val() noexcept { return v; }
    constexpr const u32& val() const noexcept { return v; }
    constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
    constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }
    constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
    constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
    constexpr modint& operator+=(const modint& rhs) noexcept {
        v += rhs.v;
        if (v >= mod) v -= mod;
        return *this;
    }
    constexpr modint& operator-=(const modint& rhs) noexcept {
        if (v < rhs.v) v += mod;
        v -= rhs.v;
        return *this;
    }
    constexpr modint& operator*=(const modint& rhs) noexcept {
        v = (u64)v * rhs.v % mod;
        return *this;
    }
    constexpr modint& operator/=(const modint& rhs) noexcept { return *this *= rhs.inv(); }
    constexpr modint pow(long long n) const noexcept {
        assert(0 <= n);
        modint self(*this), res(1);
        while (n > 0) {
            if (n & 1) res *= self;
            self *= self;
            n >>= 1;
        }
        return res;
    }
    constexpr modint inv() const noexcept {
        assert(*this != 0);
        return pow(mod - 2);
    }
    constexpr modint& operator++() noexcept {
        if (++v == mod) v = 0;
        return *this;
    }
    constexpr modint& operator--() noexcept {
        if (v == 0) v = mod;
        return --v, *this;
    }
    constexpr modint operator++(int) noexcept {
        modint t = *this;
        return ++*this, t;
    }
    constexpr modint operator--(int) noexcept {
        modint t = *this;
        return --*this, t;
    }
    constexpr modint operator-() const noexcept { return modint(mod - v); }
    template <class T> friend constexpr modint operator+(T x, modint y) noexcept { return modint(x) + y; }
    template <class T> friend constexpr modint operator-(T x, modint y) noexcept { return modint(x) - y; }
    template <class T> friend constexpr modint operator*(T x, modint y) noexcept { return modint(x) * y; }
    template <class T> friend constexpr modint operator/(T x, modint y) noexcept { return modint(x) / y; }
    constexpr bool operator==(const modint& rhs) const noexcept { return v == rhs.v; }
    constexpr bool operator!=(const modint& rhs) const noexcept { return v != rhs.v; }
    constexpr bool operator!() const noexcept { return !v; }
    friend std::istream& operator>>(std::istream& s, modint& rhs) noexcept {
        i64 v;
        rhs = modint{(s >> v, v)};
        return s;
    }
    friend std::ostream& operator<<(std::ostream& s, const modint& rhs) noexcept { return s << rhs.v; }
};

/**
 * @brief modint
 * @docs docs/modulo/modint.md
 */

#include <cassert>
#include <vector>

template <typename Monoid, typename OperatorMonoid, typename F, typename G, typename H> struct LazySegmentTree {
    LazySegmentTree(int n, const F f, const G g, const H h, const Monoid& e, const OperatorMonoid& id)
        : n(n), f(f), g(g), h(h), e(e), id(id) {
        size = 1;
        height = 0;
        while (size < n) size <<= 1, height++;
        data.assign(size << 1, e);
        lazy.assign(size << 1, id);
    }

    void set(int k, Monoid x) {
        assert(0 <= k && k < n);
        data[k + size] = x;
    }

    void build() {
        for (int k = size - 1; k > 0; k--) {
            data[k] = f(data[k << 1 | 0], data[k << 1 | 1]);
        }
    }

    void update(int a, int b, const OperatorMonoid& x) {
        assert(0 <= a && a <= b && b <= n);
        if (a == b) return;
        thrust(a += size);
        thrust(b += size - 1);
        for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
            if (l & 1) lazy[l] = h(lazy[l], x), ++l;
            if (r & 1) --r, lazy[r] = h(lazy[r], x);
        }
        recalc(a);
        recalc(b);
    }

    void set_val(int k, Monoid x) {
        assert(0 <= k && k < n);
        thrust(k += size);
        data[k] = x;
        lazy[k] = id;
        recalc(k);
    }

    Monoid query(int a, int b) {
        assert(0 <= a && a <= b && b <= n);
        if (a == b) return e;
        thrust(a += size);
        thrust(b += size - 1);
        Monoid L = e, R = e;
        for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
            if (l & 1) L = f(L, apply(l++));
            if (r & 1) R = f(apply(--r), R);
        }
        return f(L, R);
    }

    Monoid operator[](int k) {
        thrust(k += size);
        return apply(k);
    }

    template <typename C> int find_first(int l, const C& check) {
        assert(0 <= l && l <= n);
        assert(!check(e));
        if (l == n) return n;
        Monoid L = e;
        if (l == 0) {
            if (check(f(L, apply(1)))) return find_subtree(1, check, L, false);
            return n;
        }
        thrust(l + size);
        int r = size;
        for (l += size, r += size; l < r; l >>= 1, r >>= 1) {
            if (l & 1) {
                Monoid nxt = f(L, apply(l));
                if (check(nxt)) return find_subtree(l, check, L, false);
                L = nxt;
                l++;
            }
        }
        return n;
    }

    template <typename C> int find_last(int r, const C& check) {
        assert(0 <= r && r <= n);
        assert(!check(e));
        if (r == 0) return 0;
        Monoid R = e;
        if (r == n) {
            if (check(f(apply(1), R))) return find_subtree(1, check, R, true);
            return -1;
        }
        thrust(r + size - 1);
        int l = size;
        for (r += size; l < r; l >>= 1, r >>= 1) {
            if (r & 1) {
                Monoid nxt = f(apply(--r), R);
                if (check(nxt)) return find_subtree(r, check, R, true);
                R = nxt;
            }
        }
        return -1;
    }

private:
    int n, size, height;
    std::vector<Monoid> data;
    std::vector<OperatorMonoid> lazy;
    const F f;
    const G g;
    const H h;
    const Monoid e;
    const OperatorMonoid id;

    inline Monoid apply(int k) { return lazy[k] == id ? data[k] : g(data[k], lazy[k]); }

    inline void propagate(int k) {
        if (lazy[k] == id) return;
        lazy[k << 1 | 0] = h(lazy[k << 1 | 0], lazy[k]);
        lazy[k << 1 | 1] = h(lazy[k << 1 | 1], lazy[k]);
        data[k] = apply(k);
        lazy[k] = id;
    }

    inline void thrust(int k) {
        for (int i = height; i > 0; i--) propagate(k >> i);
    }

    inline void recalc(int k) {
        while (k >>= 1) data[k] = f(apply(k << 1 | 0), apply(k << 1 | 1));
    }

    template <typename C> int find_subtree(int a, const C& check, Monoid& M, bool type) {
        while (a < size) {
            propagate(a);
            Monoid nxt = type ? f(apply(a << 1 | type), M) : f(M, apply(a << 1 | type));
            if (check(nxt))
                a = a << 1 | type;
            else
                M = nxt, a = (a << 1 | 1) - type;
        }
        return a - size;
    }
};

/**
 * @brief Lazy Segment Tree
 * @docs docs/datastructure/LazySegmentTree.md
 */

const int INF = 1e9;
const long long IINF = 1e18;
const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
const char dir[4] = {'D', 'R', 'U', 'L'};
// const long long MOD = 1000000007;
const long long MOD = 998244353;

using mint = modint<MOD>;

int main() {
    cin.tie(0);
    ios::sync_with_stdio(false);
    int N;
    cin >> N;
    vector<int> A(N);
    cin >> A;

    vector<int> B = A;
    mkuni(B);
    int n = B.size();

    auto f = [](mint a, mint b) { return a + b; };
    auto g = [](mint a, mint b) { return a * b; };
    LazySegmentTree<mint, mint, decltype(f), decltype(g), decltype(g)> seg(n, f, g, g, 0, 1);
    struct node {
        mint sum;
        int a;
        node(mint sum, int a) : sum(sum), a(a) {}
    };
    struct add {
        mint b, c;
        add(mint b, mint c) : b(b), c(c) {}
        bool operator==(const add& rhs) const { return b == rhs.b && c == rhs.c; }
    };
    auto nf = [](node a, node b) { return node(a.sum + b.sum, a.a + b.a); };
    auto ng = [](node a, add x) { return node(a.sum * x.b + x.c * a.a, a.a); };
    auto nh = [](add a, add b) { return add(a.b * b.b, a.c * b.b + b.c); };
    LazySegmentTree<node, add, decltype(nf), decltype(ng), decltype(nh)> nseg(N, nf, ng, nh, node(0, 0), add(1, 0));
    for (int i = 0; i < n; i++) nseg.set(i, node(1, 1));
    mint ans = 0;

    for (int& x : A) {
        int pos = lwb(B, x);
        seg.update(pos, n, 2);
        mint val = seg[pos];
        val += nseg[pos].sum * x;
        seg.set_val(pos, val);
        nseg.update(pos + 1, n, add(2, 0));
        nseg.update(0, n, add(1, 1));
        ans += seg.query(0, n);
    }

    cout << ans << '\n';
    return 0;
}
0