結果

問題 No.1733 Sum of Sorted Subarrays
ユーザー 👑 emthrmemthrm
提出日時 2021-11-05 22:59:26
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 561 ms / 3,000 ms
コード長 13,702 bytes
コンパイル時間 2,777 ms
コンパイル使用メモリ 219,740 KB
実行使用メモリ 10,192 KB
最終ジャッジ日時 2024-11-06 14:08:57
合計ジャッジ時間 12,418 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 299 ms
6,872 KB
testcase_09 AC 465 ms
9,452 KB
testcase_10 AC 275 ms
6,656 KB
testcase_11 AC 345 ms
7,112 KB
testcase_12 AC 370 ms
8,948 KB
testcase_13 AC 375 ms
8,824 KB
testcase_14 AC 553 ms
9,932 KB
testcase_15 AC 512 ms
9,676 KB
testcase_16 AC 272 ms
6,820 KB
testcase_17 AC 561 ms
9,936 KB
testcase_18 AC 442 ms
9,268 KB
testcase_19 AC 457 ms
9,296 KB
testcase_20 AC 417 ms
9,184 KB
testcase_21 AC 501 ms
9,676 KB
testcase_22 AC 323 ms
7,068 KB
testcase_23 AC 556 ms
10,192 KB
testcase_24 AC 547 ms
10,112 KB
testcase_25 AC 555 ms
10,112 KB
testcase_26 AC 427 ms
10,116 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <int M>
struct MInt {
  unsigned int val;
  MInt(): val(0) {}
  MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}
  static constexpr int get_mod() { return M; }
  static void set_mod(int divisor) { assert(divisor == M); }
  static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }
  static MInt inv(int x, bool init = false) {
    // assert(0 <= x && x < M && std::__gcd(x, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    int prev = inverse.size();
    if (init && x >= prev) {
      // "x!" and "M" must be disjoint.
      inverse.resize(x + 1);
      for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);
    }
    if (x < inverse.size()) return inverse[x];
    unsigned int a = x, b = M; int u = 1, v = 0;
    while (b) {
      unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }
  static MInt fact(int x) {
    static std::vector<MInt> f{1};
    int prev = f.size();
    if (x >= prev) {
      f.resize(x + 1);
      for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;
    }
    return f[x];
  }
  static MInt fact_inv(int x) {
    static std::vector<MInt> finv{1};
    int prev = finv.size();
    if (x >= prev) {
      finv.resize(x + 1);
      finv[x] = inv(fact(x).val);
      for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;
    }
    return finv[x];
  }
  static MInt nCk(int n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    if (n - k > k) k = n - k;
    return fact(n) * fact_inv(k) * fact_inv(n - k);
  }
  static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }
  static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }
  static MInt large_nCk(long long n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv(k, true);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) res *= inv(i) * n--;
    return res;
  }
  MInt pow(long long exponent) const {
    MInt tmp = *this, res = 1;
    while (exponent > 0) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
      exponent >>= 1;
    }
    return res;
  }
  MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }
  MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }
  MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }
  MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }
  bool operator==(const MInt &x) const { return val == x.val; }
  bool operator!=(const MInt &x) const { return val != x.val; }
  bool operator<(const MInt &x) const { return val < x.val; }
  bool operator<=(const MInt &x) const { return val <= x.val; }
  bool operator>(const MInt &x) const { return val > x.val; }
  bool operator>=(const MInt &x) const { return val >= x.val; }
  MInt &operator++() { if (++val == M) val = 0; return *this; }
  MInt operator++(int) { MInt res = *this; ++*this; return res; }
  MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }
  MInt operator--(int) { MInt res = *this; --*this; return res; }
  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(val ? M - val : 0); }
  MInt operator+(const MInt &x) const { return MInt(*this) += x; }
  MInt operator-(const MInt &x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt &x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt &x) const { return MInt(*this) /= x; }
  friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }
  friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }
};
namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }
using ModInt = MInt<MOD>;

template <typename T>
struct LazySegmentTree {
  using Monoid = typename T::Monoid;
  using OperatorMonoid = typename T::OperatorMonoid;

  LazySegmentTree(int n) : LazySegmentTree(std::vector<Monoid>(n, T::m_id())) {}

  LazySegmentTree(const std::vector<Monoid> &a) : n(a.size()) {
    while ((1 << height) < n) ++height;
    p2 = 1 << height;
    lazy.assign(p2, T::o_id());
    dat.assign(p2 << 1, T::m_id());
    for (int i = 0; i < n; ++i) dat[i + p2] = a[i];
    for (int i = p2 - 1; i > 0; --i) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
  }

  void set(int idx, const Monoid val) {
    idx += p2;
    for (int i = height; i > 0; --i) propagate(idx >> i);
    dat[idx] = val;
    for (int i = 1; i <= height; ++i) {
      int current_idx = idx >> i;
      dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);
    }
  }

  void apply(int idx, const OperatorMonoid val) {
    idx += p2;
    for (int i = height; i > 0; --i) propagate(idx >> i);
    dat[idx] = T::apply(dat[idx], val);
    for (int i = 1; i <= height; ++i) {
      int current_idx = idx >> i;
      dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);
    }
  }

  void apply(int left, int right, const OperatorMonoid val) {
    if (right <= left) return;
    left += p2;
    right += p2;
    int left_ctz = __builtin_ctz(left);
    for (int i = height; i > left_ctz; --i) propagate(left >> i);
    int right_ctz = __builtin_ctz(right);
    for (int i = height; i > right_ctz; --i) propagate(right >> i);
    for (int l = left, r = right; l < r; l >>= 1, r >>= 1) {
      if (l & 1) sub_apply(l++, val);
      if (r & 1) sub_apply(--r, val);
    }
    for (int i = left >> (left_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
    for (int i = right >> (right_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
  }

  Monoid get(int left, int right) {
    if (right <= left) return T::m_id();
    left += p2;
    right += p2;
    int left_ctz = __builtin_ctz(left);
    for (int i = height; i > left_ctz; --i) propagate(left >> i);
    int right_ctz = __builtin_ctz(right);
    for (int i = height; i > right_ctz; --i) propagate(right >> i);
    Monoid l_res = T::m_id(), r_res = T::m_id();
    for (; left < right; left >>= 1, right >>= 1) {
      if (left & 1) l_res = T::m_merge(l_res, dat[left++]);
      if (right & 1) r_res = T::m_merge(dat[--right], r_res);
    }
    return T::m_merge(l_res, r_res);
  }

  Monoid operator[](const int idx) {
    int node = idx + p2;
    for (int i = height; i > 0; --i) propagate(node >> i);
    return dat[node];
  }

  template <typename G>
  int find_right(int left, G g) {
    if (left >= n) return n;
    left += p2;
    for (int i = height; i > 0; --i) propagate(left >> i);
    Monoid val = T::m_id();
    do {
      while (!(left & 1)) left >>= 1;
      Monoid nx = T::m_merge(val, dat[left]);
      if (!g(nx)) {
        while (left < p2) {
          propagate(left);
          left <<= 1;
          nx = T::m_merge(val, dat[left]);
          if (g(nx)) {
            val = nx;
            ++left;
          }
        }
        return left - p2;
      }
      val = nx;
      ++left;
    } while (__builtin_popcount(left) > 1);
    return n;
  }

  template <typename G>
  int find_left(int right, G g) {
    if (right <= 0) return -1;
    right += p2;
    for (int i = height; i > 0; --i) propagate((right - 1) >> i);
    Monoid val = T::m_id();
    do {
      --right;
      while (right > 1 && (right & 1)) right >>= 1;
      Monoid nx = T::m_merge(dat[right], val);
      if (!g(nx)) {
        while (right < p2) {
          propagate(right);
          right = (right << 1) + 1;
          nx = T::m_merge(dat[right], val);
          if (g(nx)) {
            val = nx;
            --right;
          }
        }
        return right - p2;
      }
      val = nx;
    } while (__builtin_popcount(right) > 1);
    return -1;
  }

private:
  int n, p2, height = 0;
  std::vector<Monoid> dat;
  std::vector<OperatorMonoid> lazy;

  void sub_apply(int idx, const OperatorMonoid &val) {
    dat[idx] = T::apply(dat[idx], val);
    if (idx < p2) lazy[idx] = T::o_merge(lazy[idx], val);
  }

  void propagate(int idx) {
    // assert(1 <= idx && idx < p2);
    sub_apply(idx << 1, lazy[idx]);
    sub_apply((idx << 1) + 1, lazy[idx]);
    lazy[idx] = T::o_id();
  }
};

namespace monoid {
template <typename T>
struct RangeMinimumAndUpdateQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::max(); }
  static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; }
};

template <typename T>
struct RangeMaximumAndUpdateQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::lowest(); }
  static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::lowest(); }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; }
};

template <typename T, T Inf>
struct RangeMinimumAndAddQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr Monoid m_id() { return Inf; }
  static constexpr OperatorMonoid o_id() { return 0; }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; }
};

template <typename T, T Inf>
struct RangeMaximumAndAddQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr Monoid m_id() { return -Inf; }
  static constexpr OperatorMonoid o_id() { return 0; }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; }
};

template <typename T>
struct RangeSumAndUpdateQuery {
  using Monoid = struct {
    T sum;
    int len;
  };
  using OperatorMonoid = T;
  static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); }
  static constexpr Monoid m_id() { return {0, 0}; }
  static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{b == o_id() ? a.sum : b * a.len, a.len}; }
};

template <typename T>
struct RangeSumAndAddQuery {
  using Monoid = struct {
    T sum;
    int len;
  };
  using OperatorMonoid = T;
  static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); }
  static constexpr Monoid m_id() { return {0, 0}; }
  static constexpr OperatorMonoid o_id() { return 0; }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{a.sum + b * a.len, a.len}; }
};
}  // monoid

int main() {
  // https://yukicoder.me/submissions/548086
  struct S {
    using Monoid = ModInt;
    using OperatorMonoid = ModInt;
    static Monoid m_id() { return 0; }
    static OperatorMonoid o_id() { return 1; }
    static Monoid m_merge(const Monoid& a, const Monoid& b) { return a + b; }
    static OperatorMonoid o_merge(const OperatorMonoid& a, const OperatorMonoid& b) { return a * b; }
    static Monoid apply(const Monoid& a, const OperatorMonoid& b) { return a * b; }
  };

  int n; cin >> n;
  vector<int> a(n); REP(i, n) cin >> a[i];
  vector<int> ord(n);
  iota(ALL(ord), 0);
  stable_sort(ALL(ord), [&](int l, int r) -> bool { return a[l] < a[r]; });
  vector<ModInt> l(n), r(n);
  LazySegmentTree<S> seg(n);
  REP(i, n) seg.set(i, 1);
  for (int i : ord) {
    l[i] = seg.get(0, i + 1) / seg[i];
    seg.apply(0, i + 1, 2);
  }
  REP(i, n) seg.set(i, 1);
  for (int i : ord) {
    r[i] = seg.get(i, n) / seg[i];
    seg.apply(i, n, 2);
  }
  ModInt ans = 0;
  REP(i, n) ans += l[i] * r[i] * a[i];
  cout << ans << '\n';
  return 0;
}
0