結果
問題 | No.1733 Sum of Sorted Subarrays |
ユーザー |
👑 ![]() |
提出日時 | 2021-11-05 22:59:26 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 532 ms / 3,000 ms |
コード長 | 13,702 bytes |
コンパイル時間 | 2,550 ms |
コンパイル使用メモリ | 212,056 KB |
最終ジャッジ日時 | 2025-01-25 13:39:25 |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 24 |
ソースコード
#define _USE_MATH_DEFINES#include <bits/stdc++.h>using namespace std;#define FOR(i,m,n) for(int i=(m);i<(n);++i)#define REP(i,n) FOR(i,0,n)#define ALL(v) (v).begin(),(v).end()using ll = long long;constexpr int INF = 0x3f3f3f3f;constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;constexpr double EPS = 1e-8;constexpr int MOD = 998244353;constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1};constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1};template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }struct IOSetup {IOSetup() {std::cin.tie(nullptr);std::ios_base::sync_with_stdio(false);std::cout << fixed << setprecision(20);}} iosetup;template <int M>struct MInt {unsigned int val;MInt(): val(0) {}MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}static constexpr int get_mod() { return M; }static void set_mod(int divisor) { assert(divisor == M); }static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }static MInt inv(int x, bool init = false) {// assert(0 <= x && x < M && std::__gcd(x, M) == 1);static std::vector<MInt> inverse{0, 1};int prev = inverse.size();if (init && x >= prev) {// "x!" and "M" must be disjoint.inverse.resize(x + 1);for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);}if (x < inverse.size()) return inverse[x];unsigned int a = x, b = M; int u = 1, v = 0;while (b) {unsigned int q = a / b;std::swap(a -= q * b, b);std::swap(u -= q * v, v);}return u;}static MInt fact(int x) {static std::vector<MInt> f{1};int prev = f.size();if (x >= prev) {f.resize(x + 1);for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;}return f[x];}static MInt fact_inv(int x) {static std::vector<MInt> finv{1};int prev = finv.size();if (x >= prev) {finv.resize(x + 1);finv[x] = inv(fact(x).val);for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;}return finv[x];}static MInt nCk(int n, int k) {if (n < 0 || n < k || k < 0) return 0;if (n - k > k) k = n - k;return fact(n) * fact_inv(k) * fact_inv(n - k);}static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }static MInt large_nCk(long long n, int k) {if (n < 0 || n < k || k < 0) return 0;inv(k, true);MInt res = 1;for (int i = 1; i <= k; ++i) res *= inv(i) * n--;return res;}MInt pow(long long exponent) const {MInt tmp = *this, res = 1;while (exponent > 0) {if (exponent & 1) res *= tmp;tmp *= tmp;exponent >>= 1;}return res;}MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }bool operator==(const MInt &x) const { return val == x.val; }bool operator!=(const MInt &x) const { return val != x.val; }bool operator<(const MInt &x) const { return val < x.val; }bool operator<=(const MInt &x) const { return val <= x.val; }bool operator>(const MInt &x) const { return val > x.val; }bool operator>=(const MInt &x) const { return val >= x.val; }MInt &operator++() { if (++val == M) val = 0; return *this; }MInt operator++(int) { MInt res = *this; ++*this; return res; }MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }MInt operator--(int) { MInt res = *this; --*this; return res; }MInt operator+() const { return *this; }MInt operator-() const { return MInt(val ? M - val : 0); }MInt operator+(const MInt &x) const { return MInt(*this) += x; }MInt operator-(const MInt &x) const { return MInt(*this) -= x; }MInt operator*(const MInt &x) const { return MInt(*this) *= x; }MInt operator/(const MInt &x) const { return MInt(*this) /= x; }friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }};namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }using ModInt = MInt<MOD>;template <typename T>struct LazySegmentTree {using Monoid = typename T::Monoid;using OperatorMonoid = typename T::OperatorMonoid;LazySegmentTree(int n) : LazySegmentTree(std::vector<Monoid>(n, T::m_id())) {}LazySegmentTree(const std::vector<Monoid> &a) : n(a.size()) {while ((1 << height) < n) ++height;p2 = 1 << height;lazy.assign(p2, T::o_id());dat.assign(p2 << 1, T::m_id());for (int i = 0; i < n; ++i) dat[i + p2] = a[i];for (int i = p2 - 1; i > 0; --i) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);}void set(int idx, const Monoid val) {idx += p2;for (int i = height; i > 0; --i) propagate(idx >> i);dat[idx] = val;for (int i = 1; i <= height; ++i) {int current_idx = idx >> i;dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);}}void apply(int idx, const OperatorMonoid val) {idx += p2;for (int i = height; i > 0; --i) propagate(idx >> i);dat[idx] = T::apply(dat[idx], val);for (int i = 1; i <= height; ++i) {int current_idx = idx >> i;dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);}}void apply(int left, int right, const OperatorMonoid val) {if (right <= left) return;left += p2;right += p2;int left_ctz = __builtin_ctz(left);for (int i = height; i > left_ctz; --i) propagate(left >> i);int right_ctz = __builtin_ctz(right);for (int i = height; i > right_ctz; --i) propagate(right >> i);for (int l = left, r = right; l < r; l >>= 1, r >>= 1) {if (l & 1) sub_apply(l++, val);if (r & 1) sub_apply(--r, val);}for (int i = left >> (left_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);for (int i = right >> (right_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);}Monoid get(int left, int right) {if (right <= left) return T::m_id();left += p2;right += p2;int left_ctz = __builtin_ctz(left);for (int i = height; i > left_ctz; --i) propagate(left >> i);int right_ctz = __builtin_ctz(right);for (int i = height; i > right_ctz; --i) propagate(right >> i);Monoid l_res = T::m_id(), r_res = T::m_id();for (; left < right; left >>= 1, right >>= 1) {if (left & 1) l_res = T::m_merge(l_res, dat[left++]);if (right & 1) r_res = T::m_merge(dat[--right], r_res);}return T::m_merge(l_res, r_res);}Monoid operator[](const int idx) {int node = idx + p2;for (int i = height; i > 0; --i) propagate(node >> i);return dat[node];}template <typename G>int find_right(int left, G g) {if (left >= n) return n;left += p2;for (int i = height; i > 0; --i) propagate(left >> i);Monoid val = T::m_id();do {while (!(left & 1)) left >>= 1;Monoid nx = T::m_merge(val, dat[left]);if (!g(nx)) {while (left < p2) {propagate(left);left <<= 1;nx = T::m_merge(val, dat[left]);if (g(nx)) {val = nx;++left;}}return left - p2;}val = nx;++left;} while (__builtin_popcount(left) > 1);return n;}template <typename G>int find_left(int right, G g) {if (right <= 0) return -1;right += p2;for (int i = height; i > 0; --i) propagate((right - 1) >> i);Monoid val = T::m_id();do {--right;while (right > 1 && (right & 1)) right >>= 1;Monoid nx = T::m_merge(dat[right], val);if (!g(nx)) {while (right < p2) {propagate(right);right = (right << 1) + 1;nx = T::m_merge(dat[right], val);if (g(nx)) {val = nx;--right;}}return right - p2;}val = nx;} while (__builtin_popcount(right) > 1);return -1;}private:int n, p2, height = 0;std::vector<Monoid> dat;std::vector<OperatorMonoid> lazy;void sub_apply(int idx, const OperatorMonoid &val) {dat[idx] = T::apply(dat[idx], val);if (idx < p2) lazy[idx] = T::o_merge(lazy[idx], val);}void propagate(int idx) {// assert(1 <= idx && idx < p2);sub_apply(idx << 1, lazy[idx]);sub_apply((idx << 1) + 1, lazy[idx]);lazy[idx] = T::o_id();}};namespace monoid {template <typename T>struct RangeMinimumAndUpdateQuery {using Monoid = T;using OperatorMonoid = T;static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::max(); }static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); }static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); }static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; }};template <typename T>struct RangeMaximumAndUpdateQuery {using Monoid = T;using OperatorMonoid = T;static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::lowest(); }static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::lowest(); }static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); }static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; }};template <typename T, T Inf>struct RangeMinimumAndAddQuery {using Monoid = T;using OperatorMonoid = T;static constexpr Monoid m_id() { return Inf; }static constexpr OperatorMonoid o_id() { return 0; }static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); }static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; }};template <typename T, T Inf>struct RangeMaximumAndAddQuery {using Monoid = T;using OperatorMonoid = T;static constexpr Monoid m_id() { return -Inf; }static constexpr OperatorMonoid o_id() { return 0; }static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); }static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; }};template <typename T>struct RangeSumAndUpdateQuery {using Monoid = struct {T sum;int len;};using OperatorMonoid = T;static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); }static constexpr Monoid m_id() { return {0, 0}; }static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); }static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; }static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{b == o_id() ? a.sum : b * a.len, a.len}; }};template <typename T>struct RangeSumAndAddQuery {using Monoid = struct {T sum;int len;};using OperatorMonoid = T;static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); }static constexpr Monoid m_id() { return {0, 0}; }static constexpr OperatorMonoid o_id() { return 0; }static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; }static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{a.sum + b * a.len, a.len}; }};} // monoidint main() {// https://yukicoder.me/submissions/548086struct S {using Monoid = ModInt;using OperatorMonoid = ModInt;static Monoid m_id() { return 0; }static OperatorMonoid o_id() { return 1; }static Monoid m_merge(const Monoid& a, const Monoid& b) { return a + b; }static OperatorMonoid o_merge(const OperatorMonoid& a, const OperatorMonoid& b) { return a * b; }static Monoid apply(const Monoid& a, const OperatorMonoid& b) { return a * b; }};int n; cin >> n;vector<int> a(n); REP(i, n) cin >> a[i];vector<int> ord(n);iota(ALL(ord), 0);stable_sort(ALL(ord), [&](int l, int r) -> bool { return a[l] < a[r]; });vector<ModInt> l(n), r(n);LazySegmentTree<S> seg(n);REP(i, n) seg.set(i, 1);for (int i : ord) {l[i] = seg.get(0, i + 1) / seg[i];seg.apply(0, i + 1, 2);}REP(i, n) seg.set(i, 1);for (int i : ord) {r[i] = seg.get(i, n) / seg[i];seg.apply(i, n, 2);}ModInt ans = 0;REP(i, n) ans += l[i] * r[i] * a[i];cout << ans << '\n';return 0;}