結果

問題 No.1888 Odd Insertion
ユーザー miscalc
提出日時 2021-11-07 03:46:26
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 1,387 bytes
コンパイル時間 210 ms
コンパイル使用メモリ 12,928 KB
実行使用メモリ 37,828 KB
最終ジャッジ日時 2024-06-29 06:03:17
合計ジャッジ時間 63,740 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 28 TLE * 9
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

# ACL-for-python by shakayami
# https://github.com/shakayami/ACL-for-python
class fenwick_tree():
n = 1
data = [0 for i in range(n)]
def __init__(self, N):
self.n = N
self.data = [0 for i in range(N)]
def add(self, p, x):
assert 0 <= p < self.n, "0<=p<n,p={0},n={1}".format(p, self.n)
p += 1
while(p <= self.n):
self.data[p-1] += x
p += p & -p
def sum(self, l, r):
assert (0 <= l and l <= r and r <=
self.n), "0<=l<=r<=n,l={0},r={1},n={2}".format(l, r, self.n)
return self.sum0(r)-self.sum0(l)
def sum0(self, r):
s = 0
while(r > 0):
s += self.data[r-1]
r -= r & -r
return s
import sys
n = int(input())
p = list(map(int, input().split()))
for i in range(n):
p[i] -= 1
q = [0] * n
for i in range(n):
q[p[i]] = i
fw = fenwick_tree(n)
x, y = [0] * n, [0] * n
for i in range(n - 1):
y1 = fw.sum(0, q[i])
y2 = fw.sum(0, q[i + 1])
if y1 % 2 != 0 and y2 % 2 != 0:
print("No")
sys.exit(0)
if y2 % 2 == 0:
if y1 % 2 != 0 or q[i] < q[i + 1]:
q[i], q[i + 1] = q[i + 1], q[i]
y1, y2 = y2, y1
x[i] = p[q[i]]
y[i] = y1
fw.add(q[i], 1)
x[-1] = p[q[-1]]
y[-1] = fw.sum(0, q[-1])
if y[-1] % 2 != 0:
print("No")
sys.exit(0)
print("Yes")
for i in range(n):
print(x[i] + 1, y[i] + 1)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0