結果
問題 | No.1744 Selfish Spies 1 (à la Princess' Perfectionism) |
ユーザー | ygussany |
提出日時 | 2021-11-07 19:52:12 |
言語 | C (gcc 12.3.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,025 bytes |
コンパイル時間 | 502 ms |
コンパイル使用メモリ | 32,768 KB |
実行使用メモリ | 11,448 KB |
最終ジャッジ日時 | 2024-05-07 12:18:53 |
合計ジャッジ時間 | 8,998 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,940 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 1 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 1 ms
6,940 KB |
testcase_07 | AC | 1 ms
6,940 KB |
testcase_08 | AC | 1 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 1 ms
6,940 KB |
testcase_11 | AC | 4 ms
6,940 KB |
testcase_12 | AC | 5 ms
6,940 KB |
testcase_13 | AC | 5 ms
6,944 KB |
testcase_14 | AC | 56 ms
6,940 KB |
testcase_15 | AC | 20 ms
6,944 KB |
testcase_16 | AC | 88 ms
6,940 KB |
testcase_17 | AC | 742 ms
6,940 KB |
testcase_18 | AC | 551 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,944 KB |
testcase_20 | AC | 3 ms
6,940 KB |
testcase_21 | AC | 34 ms
6,944 KB |
testcase_22 | AC | 5 ms
6,940 KB |
testcase_23 | AC | 5 ms
6,940 KB |
testcase_24 | TLE | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
ソースコード
#include <stdio.h> #include <stdlib.h> #define N_MAX 500 #define M_MAX 500 #define L_MAX 100000 typedef struct Edge { struct Edge *next; int v; } edge; int DFS_bipartite_matching(edge* aux[], int par[], int u) { int w; for (; aux[u] != NULL; aux[u] = aux[u]->next) { w = aux[u]->v; if (par[w] == 0) { // w is a sink par[w] = u; return w; } else if (par[w] > 0) continue; // w is already checked par[w] = u; w = DFS_bipartite_matching(aux, par, w); if (w > 0) return w; } return 0; } int bipartite_matching_augmentation(int N, char color[], edge* adj[], int mate[]) { static int i, u, w, depth[N_MAX + M_MAX + 1], par[N_MAX + M_MAX + 1], q[N_MAX + M_MAX + 1], head, tail; static edge *aux[N_MAX + M_MAX + 1], f[L_MAX * 2], *p; for (u = 1, tail = 0, par[0] = 0; u <= N; u++) { if (mate[u] == 0) { // u is a source of sink if (color[u] == 0) { // u is a source depth[u] = 0; q[tail++] = u; } else depth[u] = N; par[u] = 0; } else { depth[u] = N; par[u] = -1; } } // BFS for constructing the layered network for (head = 0, i = 0; head < tail; head++) { u = q[head]; aux[u] = NULL; if (color[u] == 0) { for (p = adj[u]; p != NULL; p = p->next) { w = p->v; if (mate[u] == w) continue; // No arc in this direction if (depth[w] == N) { // w has been found for the first time depth[w] = depth[u] + 1; q[tail++] = w; } if (depth[w] == depth[u] + 1) { // Add the arc uw f[i].v = w; f[i].next = aux[u]; aux[u] = &(f[i++]); } } } else if (mate[u] != 0) { w = mate[u]; if (depth[w] == N) { // w has been found for the first time depth[w] = depth[u] + 1; q[tail++] = w; } if (depth[w] == depth[u] + 1) { // Add the arc uw f[i].v = w; f[i].next = aux[u]; aux[u] = &(f[i++]); } } } // DFS for finding disjoint augmenting paths for (u = 1, tail = 0; u <= N; u++) { if (depth[u] != 0) continue; w = DFS_bipartite_matching(aux, par, u); if (w > 0) q[tail++] = w; // An augmenting path from u to w has been found } // Augmentation for (head = 0; head < tail; head++) { for (w = q[head], u = par[w]; u > 0; w = par[u], u = par[w]) { mate[u] = w; mate[w] = u; } } return tail; } int bipartite_matching(int N, char color[], edge* adj[], int mate[]) { int i, u, dif, ans = 0; edge *p; for (u = 1; u <= N; u++) mate[u] = 0; // Initialization do { // Augmentation dif = bipartite_matching_augmentation(N, color, adj, mate); ans += dif; } while (dif != 0); return ans; } // 1. Naive solution (O(sqrt{N + M} L^2) time) void naive1(int N, int M, int L, int s[], int t[], char ans[]) { static char color[N_MAX + M_MAX + 1]; static int i, u, w, mate[N_MAX + M_MAX + 1]; static edge *adj[N_MAX + M_MAX + 1], e[L_MAX * 2 + 1], *p; for (u = 1; u <= N + M; u++) { adj[u] = NULL; color[u] = (u > N)? 1: 0; } for (i = 0; i < L; i++) { u = s[i+1]; w = t[i+1] + N; e[i*2].v = w; e[i*2].next = adj[u]; adj[u] = &(e[i*2]); e[i*2+1].v = u; e[i*2+1].next = adj[w]; adj[w] = &(e[i*2+1]); } int j, mu = bipartite_matching(N + M, color, adj, mate); for (j = 0; j < L; j++) { for (u = 1; u <= N + M; u++) adj[u] = NULL; for (i = 0; i < L; i++) { if (i == j) continue; u = s[i+1]; w = t[i+1] + N; e[i*2].v = w; e[i*2].next = adj[u]; adj[u] = &(e[i*2]); e[i*2+1].v = u; e[i*2+1].next = adj[w]; adj[w] = &(e[i*2+1]); } if (mu == bipartite_matching(N + M, color, adj, mate)) ans[j+1] = 1; else ans[j+1] = 0; } } int main() { char ans[L_MAX + 1]; int i, N, M, L, s[L_MAX + 1], t[L_MAX + 1]; scanf("%d %d %d", &N, &M, &L); for (i = 1; i <= L; i++) scanf("%d %d", &(s[i]), &(t[i])); naive1(N, M, L, s, t, ans); for (i = 1; i <= L; i++) { if (ans[i] == 0) printf("No\n"); else printf("Yes\n"); } fflush(stdout); return 0; }