結果

問題 No.1745 Selfish Spies 2 (à la Princess' Perfectionism)
ユーザー 👑 ygussany
提出日時 2021-11-07 20:32:29
言語 C
(gcc 13.3.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 5,056 bytes
コンパイル時間 409 ms
コンパイル使用メモリ 34,296 KB
実行使用メモリ 30,472 KB
最終ジャッジ日時 2024-11-30 05:00:31
合計ジャッジ時間 61,477 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 52 TLE * 7
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <stdio.h>
#include <stdlib.h>
#define N_MAX 100000
#define M_MAX 100000
#define L_MAX 200000
typedef struct Edge {
struct Edge *next;
int v;
} edge;
int bipartite_matching_augmentation_naive(int N, char color[], edge* adj[], int mate[])
{
static int i, u, w, par[N_MAX + M_MAX + 1], q[N_MAX + M_MAX + 1], head, tail;
edge *p;
for (u = 1, tail = 0; u <= N; u++) {
if (color[u] == 0 && mate[u] == 0) {
par[u] = u;
q[tail++] = u;
} else par[u] = 0;
}
for (head = 0; head < tail; head++) {
u = q[head];
if (color[u] == 0) {
for (p = adj[u]; p != NULL; p = p->next) {
w = p->v;
if (par[w] == 0) {
par[w] = u;
if (mate[w] == 0) break;
q[tail++] = w;
}
}
if (p != NULL) break;
} else {
par[mate[u]] = u;
q[tail++] = mate[u];
}
}
if (head == tail) return 0;
// Augmentation
for (u = par[w]; u != w; w = par[u], u = par[w]) {
mate[u] = w;
mate[w] = u;
}
return 1;
}
int bipartite_matching(int N, char color[], edge* adj[], int mate[])
{
int i, u, dif, ans = 0;
edge *p;
for (u = 1; u <= N; u++) mate[u] = 0; // Initialization
do { // Augmentation
dif = bipartite_matching_augmentation_naive(N, color, adj, mate);
ans += dif;
} while (dif != 0);
return ans;
}
void chmin(int* a, int b)
{
if (*a > b) *a = b;
}
int DFS_SCC(edge* adj[], int label[], int ord[], int low[], int s[], int* head, int u)
{
s[(*head)++] = u; // Add u to the stack (which maintains the vertices already found but not determined)
ord[u] = ord[0]++;
low[u] = ord[u];
int w;
edge *p;
for (p = adj[u]; p != NULL; p = p->next) {
w = p->v;
if (ord[w] == 0) chmin(&(low[u]), DFS_SCC(adj, label, ord, low, s, head, w)); // w has been found
else if (ord[w] <= N_MAX + M_MAX) chmin(&(low[u]), ord[w]); // w is already found but not determined
}
if (low[u] == ord[u]) { // A new SCC containing u has been determined
while (s[--(*head)] != u) {
label[s[*head]] = label[0];
ord[s[*head]] = N_MAX + M_MAX + 1;
}
label[u] = label[0]++;
ord[u] = N_MAX + M_MAX + 1;
}
return low[u];
}
int SCC(int N, edge* adj[], int label[])
{
int u, w, head;
static int ord[N_MAX + M_MAX + 1], low[N_MAX + M_MAX + 1], s[N_MAX + M_MAX + 1];
for (u = 1; u <= N; u++) {
label[u] = 0;
ord[u] = 0;
}
for (u = 1, label[0] = 1, ord[0] = 1; u <= N; u++) {
if (ord[u] != 0) continue;
head = 0;
DFS_SCC(adj, label, ord, low, s, &head, u);
}
return label[0] - 1;
}
// 2. Solution example (O(sqrt{N + M} L) time)
void solve2(int N, int M, int L, int s[], int t[], char ans[])
{
static char color[N_MAX + M_MAX + 1];
static int i, u, w, mate[N_MAX + M_MAX + 1];
static edge *adj[N_MAX + M_MAX + 1], e[L_MAX * 2 + 1], *p;
for (u = 1; u <= N + M; u++) {
adj[u] = NULL;
color[u] = (u > N)? 1: 0;
}
for (i = 0; i < L; i++) {
u = s[i+1];
w = t[i+1] + N;
e[i*2].v = w;
e[i*2].next = adj[u];
adj[u] = &(e[i*2]);
e[i*2+1].v = u;
e[i*2+1].next = adj[w];
adj[w] = &(e[i*2+1]);
}
bipartite_matching(N + M, color, adj, mate);
static int par[N_MAX + M_MAX + 1], q[N_MAX + M_MAX + 1], head, tail;
for (u = 1; u <= N + M; u++) par[u] = 0;
for (u = 1, tail = 0; u <= N; u++) {
if (mate[u] == 0) {
par[u] = u;
q[tail++] = u;
}
}
for (head = 0; head < tail; head++) {
u = q[head];
if (color[u] == 0) {
for (p = adj[u]; p != NULL; p = p->next) {
w = p->v;
if (par[w] == 0) {
par[w] = u;
q[tail++] = w;
}
}
} else {
par[mate[u]] = u;
q[tail++] = mate[u];
}
}
for (u = N + 1, tail = 0; u <= N + M; u++) {
if (mate[u] == 0) {
par[u] = -u;
q[tail++] = u;
}
}
for (head = 0; head < tail; head++) {
u = q[head];
if (color[u] != 0) {
for (p = adj[u]; p != NULL; p = p->next) {
w = p->v;
if (par[w] == 0) {
par[w] = -u;
q[tail++] = w;
}
}
} else {
par[mate[u]] = -u;
q[tail++] = mate[u];
}
}
int m = 0;
static int label[N_MAX + M_MAX + 1];
static edge *aux[N_MAX + M_MAX + 1], f[L_MAX + N_MAX + 1];
for (u = 1; u <= N; u++) {
aux[u] = NULL;
if (par[u] != 0) continue;
for (p = adj[u]; p != NULL; p = p->next) {
w = p->v;
if (par[w] != 0) continue;
f[m].v = w;
f[m].next = aux[u];
aux[u] = &(f[m++]);
}
}
for (u = N + 1; u <= N + M; u++) {
aux[u] = NULL;
if (par[u] != 0) continue;
for (p = adj[u]; p != NULL; p = p->next) {
w = p->v;
if (par[w] == 0 && w == mate[u]) {
f[m].v = w;
f[m].next = aux[u];
aux[u] = &(f[m++]);
}
}
}
SCC(N + M, aux, label);
for (i = 1; i <= L; i++) {
u = s[i];
w = t[i] + N;
if (par[u] > 0 && par[w] > 0) ans[i] = 1;
else if (par[u] < 0 && par[w] < 0) ans[i] = 1;
else if (label[u] == label[w]) ans[i] = 1;
else ans[i] = 0;
}
}
int main()
{
char ans[L_MAX + 1];
int i, N, M, L, s[L_MAX + 1], t[L_MAX + 1];
scanf("%d %d %d", &N, &M, &L);
for (i = 1; i <= L; i++) scanf("%d %d", &(s[i]), &(t[i]));
solve2(N, M, L, s, t, ans);
for (i = 1; i <= L; i++) {
if (ans[i] == 0) printf("No\n");
else printf("Yes\n");
}
fflush(stdout);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0