結果
問題 | No.1744 Selfish Spies 1 (à la Princess' Perfectionism) |
ユーザー |
👑 |
提出日時 | 2021-11-08 00:32:37 |
言語 | C (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 153 ms / 5,000 ms |
コード長 | 5,181 bytes |
コンパイル時間 | 537 ms |
コンパイル使用メモリ | 34,428 KB |
実行使用メモリ | 7,560 KB |
最終ジャッジ日時 | 2024-11-30 05:01:42 |
合計ジャッジ時間 | 2,589 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 39 |
ソースコード
#include <stdio.h>#include <stdlib.h>#define N_MAX 500#define M_MAX 500#define L_MAX 100000typedef struct Edge {struct Edge *next;int v;} edge;int bipartite_matching_augmentation_naive(int N, char color[], edge* adj[], int mate[]){static int i, u, w, par[N_MAX + M_MAX + 1], q[N_MAX + M_MAX + 1], head, tail;edge *p;for (u = 1, tail = 0; u <= N; u++) {if (color[u] == 0 && mate[u] == 0) {par[u] = u;q[tail++] = u;} else par[u] = 0;}for (head = 0; head < tail; head++) {u = q[head];if (color[u] == 0) {for (p = adj[u]; p != NULL; p = p->next) {w = p->v;if (par[w] == 0) {par[w] = u;if (mate[w] == 0) break;q[tail++] = w;}}if (p != NULL) break;} else {par[mate[u]] = u;q[tail++] = mate[u];}}if (head == tail) return 0;// Augmentationfor (u = par[w]; u != w; w = par[u], u = par[w]) {mate[u] = w;mate[w] = u;}return 1;}int bipartite_matching(int N, char color[], edge* adj[], int mate[]){int i, u, dif, ans = 0;edge *p;for (u = 1; u <= N; u++) mate[u] = 0; // Initializationdo { // Augmentationdif = bipartite_matching_augmentation_naive(N, color, adj, mate);ans += dif;} while (dif != 0);return ans;}void chmin(int* a, int b){if (*a > b) *a = b;}int DFS_SCC(edge* adj[], int label[], int ord[], int low[], int s[], int* head, int u){s[(*head)++] = u; // Add u to the stack (which maintains the vertices already found but not determined)ord[u] = ord[0]++;low[u] = ord[u];int w;edge *p;for (p = adj[u]; p != NULL; p = p->next) {w = p->v;if (ord[w] == 0) chmin(&(low[u]), DFS_SCC(adj, label, ord, low, s, head, w)); // w has been foundelse if (ord[w] <= N_MAX + M_MAX) chmin(&(low[u]), ord[w]); // w is already found but not determined}if (low[u] == ord[u]) { // A new SCC containing u has been determinedwhile (s[--(*head)] != u) {label[s[*head]] = label[0];ord[s[*head]] = N_MAX + M_MAX + 1;}label[u] = label[0]++;ord[u] = N_MAX + M_MAX + 1;}return low[u];}int SCC(int N, edge* adj[], int label[]){int u, w, head;static int ord[N_MAX + M_MAX + 1], low[N_MAX + M_MAX + 1], s[N_MAX + M_MAX + 1];for (u = 1; u <= N; u++) {label[u] = 0;ord[u] = 0;}for (u = 1, label[0] = 1, ord[0] = 1; u <= N; u++) {if (ord[u] != 0) continue;head = 0;DFS_SCC(adj, label, ord, low, s, &head, u);}return label[0] - 1;}// 1. Solution example (O(sqrt{N + M} L) time)void solve1(int N, int M, int L, int s[], int t[], char ans[]){static char color[N_MAX + M_MAX + 1];static int i, u, w, mate[N_MAX + M_MAX + 1];static edge *adj[N_MAX + M_MAX + 1], e[L_MAX * 2 + 1], *p;for (u = 1; u <= N + M; u++) {adj[u] = NULL;color[u] = (u > N)? 1: 0;}for (i = 0; i < L; i++) {u = s[i+1];w = t[i+1] + N;e[i*2].v = w;e[i*2].next = adj[u];adj[u] = &(e[i*2]);e[i*2+1].v = u;e[i*2+1].next = adj[w];adj[w] = &(e[i*2+1]);}bipartite_matching(N + M, color, adj, mate);static int par[N_MAX + M_MAX + 1], q[N_MAX + M_MAX + 1], head, tail;for (u = 1; u <= N + M; u++) par[u] = 0;for (u = 1, tail = 0; u <= N; u++) {if (mate[u] == 0) {par[u] = u;q[tail++] = u;}}for (head = 0; head < tail; head++) {u = q[head];if (color[u] == 0) {for (p = adj[u]; p != NULL; p = p->next) {w = p->v;if (par[w] == 0) {par[w] = u;q[tail++] = w;}}if (p != NULL) break;} else {par[mate[u]] = u;q[tail++] = mate[u];}}for (u = N + 1, tail = 0; u <= N + M; u++) {if (mate[u] == 0) {par[u] = -u;q[tail++] = u;}}for (head = 0; head < tail; head++) {u = q[head];if (color[u] != 0) {for (p = adj[u]; p != NULL; p = p->next) {w = p->v;if (par[w] == 0) {par[w] = -u;q[tail++] = w;}}if (p != NULL) break;} else {par[mate[u]] = -u;q[tail++] = mate[u];}}int m = 0;static int label[N_MAX + M_MAX + 1];static edge *aux[N_MAX + M_MAX + 1], f[L_MAX + N_MAX + 1];for (u = 1; u <= N; u++) {aux[u] = NULL;if (par[u] != 0) continue;for (p = adj[u]; p != NULL; p = p->next) {w = p->v;if (par[w] != 0) continue;f[m].v = w;f[m].next = aux[u];aux[u] = &(f[m++]);}}for (u = N + 1; u <= N + M; u++) {aux[u] = NULL;if (par[u] != 0) continue;for (p = adj[u]; p != NULL; p = p->next) {w = p->v;if (par[w] == 0 && w == mate[u]) {f[m].v = w;f[m].next = aux[u];aux[u] = &(f[m++]);}}}static int num[N_MAX + M_MAX + 1];int n = SCC(N + M, aux, label);for (i = 1; i <= n; i++) num[i] = 0;for (u = 1; u <= N + M; u++) num[label[u]]++;for (i = 1; i <= L; i++) {u = s[i];w = t[i] + N;if (par[u] == 0 && par[w] == 0 && label[u] == label[w] && num[label[u]] == 2) ans[i] = 0;else ans[i] = 1;}}int main(){char ans[L_MAX + 1];int i, N, M, L, s[L_MAX + 1], t[L_MAX + 1];scanf("%d %d %d", &N, &M, &L);for (i = 1; i <= L; i++) scanf("%d %d", &(s[i]), &(t[i]));solve1(N, M, L, s, t, ans);for (i = 1; i <= L; i++) {if (ans[i] == 0) printf("No\n");else printf("Yes\n");}fflush(stdout);return 0;}