結果
| 問題 |
No.1744 Selfish Spies 1 (à la Princess' Perfectionism)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-11-14 21:45:22 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 4,712 ms / 5,000 ms |
| コード長 | 10,282 bytes |
| コンパイル時間 | 7,832 ms |
| コンパイル使用メモリ | 278,856 KB |
| 最終ジャッジ日時 | 2025-01-25 18:07:23 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 39 |
ソースコード
#line 1 "main.cpp"
#include <bits/stdc++.h>
#line 2 "library/utility/eoln.cpp"
constexpr char eoln = '\n';
#line 2 "library/utility/int_alias.cpp"
#line 5 "library/utility/int_alias.cpp"
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
using isize = std::ptrdiff_t;
#line 2 "library/utility/int_infinity.cpp"
#line 5 "library/utility/int_infinity.cpp"
template <class T, T Div = 2> constexpr T infty = std::numeric_limits<T>::max() / Div;
constexpr i32 infi32 = infty<i32, 2>;
constexpr i64 infi64 = infty<i64, 4>;
constexpr u32 infu32 = infty<u32, 4>;
constexpr u64 infu64 = infty<u32, 4>;
constexpr isize infisz = infty<isize, 2>;
constexpr usize infusz = infty<usize, 4>;
#line 2 "library/utility/int_literal.cpp"
#line 6 "library/utility/int_literal.cpp"
constexpr std::int8_t operator""_i8(unsigned long long n) noexcept { return static_cast<std::int8_t>(n); }
constexpr std::int16_t operator""_i16(unsigned long long n) noexcept { return static_cast<std::int16_t>(n); }
constexpr std::int32_t operator""_i32(unsigned long long n) noexcept { return static_cast<std::int32_t>(n); }
constexpr std::int64_t operator""_i64(unsigned long long n) noexcept { return static_cast<std::int64_t>(n); }
constexpr std::int8_t operator""_u8(unsigned long long n) noexcept { return static_cast<std::uint8_t>(n); }
constexpr std::uint16_t operator""_u16(unsigned long long n) noexcept { return static_cast<std::uint16_t>(n); }
constexpr std::uint32_t operator""_u32(unsigned long long n) noexcept { return static_cast<std::uint32_t>(n); }
constexpr std::uint64_t operator""_u64(unsigned long long n) noexcept { return static_cast<std::uint64_t>(n); }
constexpr isize operator""_iz(unsigned long long n) noexcept { return static_cast<isize>(n); }
constexpr usize operator""_uz(unsigned long long n) noexcept { return static_cast<usize>(n); }
#line 7 "main.cpp"
#line 2 "library/utility/rep.cpp"
#line 4 "library/utility/rep.cpp"
class rep {
struct rep_iterator {
usize itr;
constexpr rep_iterator(const usize pos) noexcept : itr(pos) {}
constexpr void operator++() noexcept { ++itr; }
constexpr bool operator!=(const usize &other) const noexcept { return itr != other; }
constexpr usize operator*() const noexcept { return itr; }
};
const rep_iterator first;
const usize last;
public:
constexpr rep(const usize first_, const usize last_) noexcept : first(first_), last(last_) {}
constexpr rep_iterator begin() const noexcept { return first; }
constexpr usize end() const noexcept { return last; }
};
#line 2 "library/utility/revrep.cpp"
#line 4 "library/utility/revrep.cpp"
class revrep {
struct revrep_iterator {
usize itr;
constexpr revrep_iterator(const usize pos) noexcept : itr(pos) {}
constexpr void operator++() noexcept { --itr; }
constexpr bool operator!=(const usize &other) const noexcept { return itr != other; }
constexpr usize operator*() const noexcept { return itr; }
};
const revrep_iterator first;
const usize last;
public:
constexpr revrep(const usize first_, const usize last_) noexcept
: first(last_ - 1), last(first_ - 1) {}
constexpr revrep_iterator begin() const noexcept { return first; }
constexpr usize end() const noexcept { return last; }
};
#line 10 "main.cpp"
#line 2 "library/utility/scan.cpp"
#line 4 "library/utility/scan.cpp"
template <class T> T scan() {
T x;
std::cin >> x;
return x;
}
#line 12 "main.cpp"
#ifndef CL_DEBUG
#define pdebug(...)
#endif
#line 1 "atcoder/maxflow.hpp"
#line 9 "atcoder/maxflow.hpp"
#line 1 "atcoder/internal_queue.hpp"
#line 5 "atcoder/internal_queue.hpp"
namespace atcoder {
namespace internal {
template <class T> struct simple_queue {
std::vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T& t) { payload.push_back(t); }
T& front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
} // namespace internal
} // namespace atcoder
#line 11 "atcoder/maxflow.hpp"
namespace atcoder {
template <class Cap> struct mf_graph {
public:
mf_graph() : _n(0) {}
explicit mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap});
g[to].push_back(_edge{from, from_id, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto &_e = g[pos[i].first][pos[i].second];
auto &_re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
std::vector<int> level(_n), iter(_n);
internal::simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int &i = iter[v]; i < int(g[v].size()); i++) {
_edge &e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d = self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) return res;
}
level[v] = _n;
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
return flow;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(_n);
internal::simple_queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
#line 18 "main.cpp"
void main_() {
// main process
const usize N = scan<usize>();
const usize M = scan<usize>();
atcoder::mf_graph<int> graph(N + M + 2);
const usize L = scan<usize>();
std::vector<usize> S(L), T(L);
for (const auto i : rep(0, L)) {
S[i] = scan<usize>() - 1;
T[i] = scan<usize>() - 1;
graph.add_edge(S[i] + 1, N + T[i] + 1, 1);
}
for (const auto i : rep(0, N))
graph.add_edge(0, i + 1, 1);
for (const auto i : rep(0, M))
graph.add_edge(N + i + 1, N + M + 1, 1);
const auto max_flow = graph.flow(0, N + M + 1);
auto edges = graph.edges();
std::set<usize> needcheck;
for (const auto i : rep(0, L))
if (edges[i].flow == 1) needcheck.emplace(i);
std::vector<bool> is_ok(L, true);
for (const auto e : needcheck)
is_ok[e] = false;
while (not needcheck.empty()) {
for (const auto i : rep(0, L + N + M))
graph.change_edge(i, 1, 0);
const auto f = *needcheck.begin();
needcheck.erase(f);
graph.change_edge(f, 1, 1);
const auto max_flow_sub = graph.flow(0, N + M + 1);
if (max_flow_sub != max_flow) continue;
is_ok[f] = true;
edges = graph.edges();
for (const auto i : rep(0, L))
if (edges[i].flow == 0) {
if (needcheck.find(i) != needcheck.end()) {
is_ok[i] = true;
needcheck.erase(i);
}
}
}
for (const auto e : is_ok)
std::cout << (e ? "Yes" : "No") << eoln;
// Dinic 法の実用的な計算量はオーダーから想定されるより小さいらしいが、わからん!
}
int main(void) {
usize T = 1;
// std::cin >> T;
while (T--)
main_();
}