結果

問題 No.1744 Selfish Spies 1 (à la Princess' Perfectionism)
ユーザー PCTprobabilityPCTprobability
提出日時 2021-11-14 21:48:27
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 6,417 bytes
コンパイル時間 7,901 ms
コンパイル使用メモリ 336,452 KB
実行使用メモリ 39,984 KB
最終ジャッジ日時 2024-11-30 07:08:02
合計ジャッジ時間 40,218 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
26,688 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 3 ms
6,820 KB
testcase_10 AC 3 ms
6,816 KB
testcase_11 AC 3 ms
6,816 KB
testcase_12 AC 5 ms
6,820 KB
testcase_13 AC 5 ms
6,820 KB
testcase_14 AC 27 ms
6,816 KB
testcase_15 AC 17 ms
6,816 KB
testcase_16 AC 41 ms
6,820 KB
testcase_17 AC 163 ms
6,816 KB
testcase_18 AC 145 ms
6,820 KB
testcase_19 AC 2 ms
6,820 KB
testcase_20 AC 3 ms
6,816 KB
testcase_21 AC 5 ms
6,820 KB
testcase_22 AC 5 ms
6,816 KB
testcase_23 AC 5 ms
6,816 KB
testcase_24 AC 306 ms
6,820 KB
testcase_25 AC 27 ms
6,820 KB
testcase_26 AC 54 ms
6,820 KB
testcase_27 AC 337 ms
6,820 KB
testcase_28 AC 2,816 ms
19,872 KB
testcase_29 AC 322 ms
6,816 KB
testcase_30 AC 287 ms
6,816 KB
testcase_31 AC 369 ms
6,820 KB
testcase_32 AC 358 ms
6,820 KB
testcase_33 AC 2,417 ms
19,916 KB
testcase_34 AC 1,926 ms
19,668 KB
testcase_35 TLE -
testcase_36 TLE -
testcase_37 TLE -
testcase_38 AC 3,878 ms
39,984 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
using ll = long long;
using ld = long double;
using ull = unsigned long long;
#define endl "\n"
typedef pair<int, int> Pii;
#define REP(i, n) for (int i = 0; i < (n); ++i)
#define REP3(i, m, n) for (int i = (m); (i) < int(n); ++ (i))
#define FOR(i,a,b) for(ll i=a;i<=(ll)(b);i++)
#define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++)
#define ALL(x) begin(x), end(x)
#define PB push_back
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(s) (s).begin(),(s).end()
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
#define rever(vec) reverse(vec.begin(), vec.end())
#define sor(vec) sort(vec.begin(), vec.end())
#define fi first
#define se second
#define pb push_back
#define P pair<ll,ll>
#define PQminll priority_queue<ll, vector<ll>, greater<ll>>
#define PQmaxll priority_queue<ll,vector<ll>,less<ll>>
#define PQminP priority_queue<P, vector<P>, greater<P>>
#define PQmaxP priority_queue<P,vector<P>,less<P>>
#define NP next_permutation
typedef string::const_iterator State;
class ParseError {};
//const ll mod = 1000000009;
//const ll mod = 998244353;
const ll mod = 1000000007;
const ll inf = 4100000000000000000ll;
const ld eps = ld(0.00000000000001);
//static const long double pi = 3.141592653589793;
template<class T>void vcin(vector<T> &n){for(int i=0;i<int(n.size());i++) cin>>n[i];}
template<class T,class K>void vcin(vector<T> &n,vector<K> &m){for(int i=0;i<int(n.size());i++) cin>>n[i]>>m[i];}
template<class T>void vcout(vector<T> &n){for(int i=0;i<int(n.size());i++){cout<<n[i]<<" ";}cout<<endl;}
template<class T>void vcin(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cin>>n[i][j];}}}
template<class T>void vcout(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cout<<n[i][j]<<" ";}cout<<endl;}cout<<endl;}
void yes(bool a){cout<<(a?"yes":"no")<<endl;}
void YES(bool a){cout<<(a?"YES":"NO")<<endl;}
void Yes(bool a){cout<<(a?"Yes":"No")<<endl;}
void possible(bool a){ cout<<(a?"possible":"impossible")<<endl; }
void Possible(bool a){ cout<<(a?"Possible":"Impossible")<<endl; }
void POSSIBLE(bool a){ cout<<(a?"POSSIBLE":"IMPOSSIBLE")<<endl; }
template<class T>void print(T a){cout<<a<<endl;}
template<class T>auto min(const T& a){ return *min_element(all(a)); }
template<class T>auto max(const T& a){ return *max_element(all(a)); }
template<class T,class F>void print(pair<T,F> a){cout<<a.fi<<" "<<a.se<<endl;}
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0;}
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0;}
template<class T> void ifmin(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}}
template<class T> void ifmax(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}}
ll fastgcd(ll u,ll v){ll shl=0;while(u&&v&&u!=v){bool eu=!(u&1);bool ev=!(v&1);if(eu&&ev){++shl;u>>=1;v>>=1;}else if(eu&&!ev){u>>=1;}else if(!eu&&ev){v>>=1;}else if(u>=v){u=(u-v)>>1;}else{ll tmp=u;u=(v-u)>>1;v=tmp;}}return !u?v<<shl:u<<shl;}
ll modPow(ll a, ll n, ll mod) { if(mod==1) return 0;ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; }
vector<ll> divisor(ll x){ vector<ll> ans; for(ll i = 1; i * i <= x; i++){ if(x % i == 0) {ans.push_back(i); if(i*i!=x){ ans.push_back(x / ans[i]);}}}sor(ans); return ans; }
ll pop(ll x){return __builtin_popcountll(x);}
ll poplong(ll x){ll y=-1;while(x){x/=2;y++;}return y;}
P hyou(P a){ll x=fastgcd(abs(a.fi),abs(a.se));a.fi/=x;a.se/=x;if(a.se<0){a.fi*=-1;a.se*=-1;}return a;}
P Pplus(P a,P b){ return hyou({a.fi*b.se+b.fi*a.se,a.se*b.se});}
P Ptimes(P a,ll b){ return hyou({a.fi*b,a.se});}
P Ptimes(P a,P b){ return hyou({a.fi*b.fi,a.se*b.se});}
P Pminus(P a,P b){ return hyou({a.fi*b.se-b.fi*a.se,a.se*b.se});}
P Pgyaku(P a){ return hyou({a.se,a.fi});}

void cincout(){
  ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
  cout<< fixed << setprecision(10);
}
struct HopcroftKarp {
  vector< vector< int > > graph;
  vector< int > dist, match;
  vector< bool > used, vv;

  HopcroftKarp(int n, int m) : graph(n), match(m, -1), used(n) {}

  void add_edge(int u, int v) {
    graph[u].push_back(v);
  }

  void bfs() {
    dist.assign(graph.size(), -1);
    queue< int > que;
    for(int i = 0; i < graph.size(); i++) {
      if(!used[i]) {
        que.emplace(i);
        dist[i] = 0;
      }
    }

    while(!que.empty()) {
      int a = que.front();
      que.pop();
      for(auto &b : graph[a]) {
        int c = match[b];
        if(c >= 0 && dist[c] == -1) {
          dist[c] = dist[a] + 1;
          que.emplace(c);
        }
      }
    }
  }

  bool dfs(int a) {
    vv[a] = true;
    for(auto &b : graph[a]) {
      int c = match[b];
      if(c < 0 || (!vv[c] && dist[c] == dist[a] + 1 && dfs(c))) {
        match[b] = a;
        used[a] = true;
        return (true);
      }
    }
    return (false);
  }

  int bipartite_matching() {
    int ret = 0;
    while(true) {
      bfs();
      vv.assign(graph.size(), false);
      int flow = 0;
      for(int i = 0; i < graph.size(); i++) {
        if(!used[i] && dfs(i)) ++flow;
      }
      if(flow == 0) return (ret);
      ret += flow;
    }
  }

  void output() {
    for(int i = 0; i < match.size(); i++) {
      if(~match[i]) {
        cout << match[i] << "-" << i << endl;
      }
    }
  }
};
int main() {
  cincout();
  ll n,m,l;
  cin>>n>>m>>l;
  vector<ll> a(l),b(l);
  ll x=0,y=0;
  for(int i=0;i<l;i++){
    cin>>a[i]>>b[i];
    a[i]--;
    b[i]--;
  }
  vector<bool> ans(l,false);
  mcf_graph<ll,ll> g(2+n+m);
  ll s=n+m,t=n+m+1;
  for(int i=0;i<l;i++){
    g.add_edge(a[i],n+b[i],1,0);
  }
  for(int i=0;i<n;i++) g.add_edge(s,i,1,0);
  for(int i=0;i<m;i++) g.add_edge(n+i,t,1,0);
  auto h=g.flow(s,t);
  auto u=g.edges();
  ll c=0;
  for(int i=0;i<l;i++){
    if(u[i].flow==0) ans[i]=true;
    else c++;
  }
  for(int i=0;i<l;i++){
    if(ans[i]==false){
      HopcroftKarp g2(n,m);
      for(int j=0;j<l;j++){
        if(i==j) continue;
        g2.add_edge(a[j],b[j]);
      }
      if(g2.bipartite_matching()==c) ans[i]=true;
    }
  }
  for(auto e:ans) Yes(e);
}
0