結果

問題 No.1744 Selfish Spies 1 (à la Princess' Perfectionism)
ユーザー torisasami4torisasami4
提出日時 2021-11-14 21:54:44
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 8,828 bytes
コンパイル時間 3,447 ms
コンパイル使用メモリ 249,408 KB
実行使用メモリ 31,732 KB
最終ジャッジ日時 2024-11-30 07:22:38
合計ジャッジ時間 52,312 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
31,724 KB
testcase_01 AC 2 ms
31,732 KB
testcase_02 AC 2 ms
31,476 KB
testcase_03 AC 2 ms
13,640 KB
testcase_04 AC 2 ms
31,384 KB
testcase_05 AC 2 ms
13,640 KB
testcase_06 AC 2 ms
13,636 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 3 ms
6,816 KB
testcase_10 AC 3 ms
6,816 KB
testcase_11 AC 5 ms
6,816 KB
testcase_12 AC 13 ms
6,816 KB
testcase_13 AC 12 ms
6,820 KB
testcase_14 AC 75 ms
6,816 KB
testcase_15 AC 51 ms
6,816 KB
testcase_16 AC 91 ms
6,816 KB
testcase_17 AC 337 ms
6,816 KB
testcase_18 AC 355 ms
6,820 KB
testcase_19 AC 4 ms
6,816 KB
testcase_20 AC 5 ms
6,816 KB
testcase_21 AC 10 ms
6,820 KB
testcase_22 AC 13 ms
6,816 KB
testcase_23 AC 12 ms
6,816 KB
testcase_24 AC 721 ms
7,436 KB
testcase_25 AC 74 ms
6,820 KB
testcase_26 AC 103 ms
6,816 KB
testcase_27 AC 823 ms
6,820 KB
testcase_28 TLE -
testcase_29 AC 790 ms
6,816 KB
testcase_30 AC 706 ms
6,820 KB
testcase_31 AC 802 ms
6,816 KB
testcase_32 AC 721 ms
6,820 KB
testcase_33 TLE -
testcase_34 TLE -
testcase_35 TLE -
testcase_36 TLE -
testcase_37 TLE -
testcase_38 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb(...) emplace_back(__VA_ARGS__)
#define mp(a, b) make_pair(a, b)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define lscan(x) scanf("%I64d", &x)
#define lprint(x) printf("%I64d", x)
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define rep2(i, n) for (ll i = (ll)n - 1; i >= 0; i--)
#define REP(i, l, r) for (ll i = l; i < (r); i++)
#define REP2(i, l, r) for (ll i = (ll)r - 1; i >= (l); i--)
#define siz(x) (ll) x.size()
template <class T>
using rque = priority_queue<T, vector<T>, greater<T>>;

template <class T>
bool chmin(T &a, const T &b) {
    if (b < a) {
        a = b;
        return 1;
    }
    return 0;
}

template <class T>
bool chmax(T &a, const T &b) {
    if (b > a) {
        a = b;
        return 1;
    }
    return 0;
}

__int128_t gcd(__int128_t a, __int128_t b) {
    if (a == 0)
        return b;
    if (b == 0)
        return a;
    __int128_t cnt = a % b;
    while (cnt != 0) {
        a = b;
        b = cnt;
        cnt = a % b;
    }
    return b;
}

long long extGCD(long long a, long long b, long long &x, long long &y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

struct UnionFind {
    vector<ll> data;
    int num;

    UnionFind(int sz) {
        data.assign(sz, -1);
        num = sz;
    }

    bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y)
            return (false);
        if (data[x] > data[y])
            swap(x, y);
        data[x] += data[y];
        data[y] = x;
        num--;
        return (true);
    }

    int find(int k) {
        if (data[k] < 0)
            return (k);
        return (data[k] = find(data[k]));
    }

    ll size(int k) {
        return (-data[find(k)]);
    }

    bool same(int x, int y) {
        return find(x) == find(y);
    }
};

template <int mod>
struct ModInt {
    int x;

    ModInt() : x(0) {
    }

    ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {
    }

    ModInt &operator+=(const ModInt &p) {
        if ((x += p.x) >= mod)
            x -= mod;
        return *this;
    }

    ModInt &operator-=(const ModInt &p) {
        if ((x += mod - p.x) >= mod)
            x -= mod;
        return *this;
    }

    ModInt &operator*=(const ModInt &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    ModInt &operator/=(const ModInt &p) {
        *this *= p.inverse();
        return *this;
    }

    ModInt operator-() const {
        return ModInt(-x);
    }

    ModInt operator+(const ModInt &p) const {
        return ModInt(*this) += p;
    }

    ModInt operator-(const ModInt &p) const {
        return ModInt(*this) -= p;
    }

    ModInt &operator++() {
        return *this += ModInt(1);
    }

    ModInt operator++(int) {
        ModInt tmp = *this;
        ++*this;
        return tmp;
    }

    ModInt &operator--() {
        return *this -= ModInt(1);
    }

    ModInt operator--(int) {
        ModInt tmp = *this;
        --*this;
        return tmp;
    }

    ModInt operator*(const ModInt &p) const {
        return ModInt(*this) *= p;
    }

    ModInt operator/(const ModInt &p) const {
        return ModInt(*this) /= p;
    }

    bool operator==(const ModInt &p) const {
        return x == p.x;
    }

    bool operator!=(const ModInt &p) const {
        return x != p.x;
    }

    ModInt inverse() const {
        int a = x, b = mod, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
        }
        return ModInt(u);
    }

    ModInt pow(int64_t n) const {
        ModInt ret(1), mul(x);
        while (n > 0) {
            if (n & 1)
                ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const ModInt &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, ModInt &a) {
        int64_t t;
        is >> t;
        a = ModInt<mod>(t);
        return (is);
    }

    static int get_mod() {
        return mod;
    }
};

ll mpow2(ll x, ll n, ll mod) {
    ll ans = 1;
    while (n != 0) {
        if (n & 1)
            ans = ans * x % mod;
        x = x * x % mod;
        n = n >> 1;
    }
    return ans;
}
ll modinv2(ll a, ll mod) {
    ll b = mod, u = 1, v = 0;
    while (b) {
        ll t = a / b;
        a -= t * b;
        swap(a, b);
        u -= t * v;
        swap(u, v);
    }
    u %= mod;
    if (u < 0)
        u += mod;
    return u;
}

constexpr int mod = 1000000007;
// constexpr int mod = 998244353;
// constexpr int mod = 31607;
using mint = ModInt<mod>;

mint mpow(mint x, ll n) {
    mint ans = 1;
    while (n != 0) {
        if (n & 1)
            ans *= x;
        x *= x;
        n = n >> 1;
    }
    return ans;
}

// ----- library -------
template <typename flow_t>
struct Dinic {
    const flow_t INF;

    struct edge {
        int to;
        flow_t cap;
        int rev;
        bool isrev;
        int idx;
    };

    vector<vector<edge>> graph;
    vector<int> min_cost, iter;

    Dinic(int V) : INF(numeric_limits<flow_t>::max()), graph(V) {
    }

    void add_edge(int from, int to, flow_t cap, int idx = -1) {
        graph[from].emplace_back((edge){to, cap, (int)graph[to].size(), false, idx});
        graph[to].emplace_back((edge){from, 0, (int)graph[from].size() - 1, true, idx});
    }

    bool bfs(int s, int t) {
        min_cost.assign(graph.size(), -1);
        queue<int> que;
        min_cost[s] = 0;
        que.push(s);
        while (!que.empty() && min_cost[t] == -1) {
            int p = que.front();
            que.pop();
            for (auto &e : graph[p]) {
                if (e.cap > 0 && min_cost[e.to] == -1) {
                    min_cost[e.to] = min_cost[p] + 1;
                    que.push(e.to);
                }
            }
        }
        return min_cost[t] != -1;
    }

    flow_t dfs(int idx, const int t, flow_t flow) {
        if (idx == t)
            return flow;
        for (int &i = iter[idx]; i < graph[idx].size(); i++) {
            edge &e = graph[idx][i];
            if (e.cap > 0 && min_cost[idx] < min_cost[e.to]) {
                flow_t d = dfs(e.to, t, min(flow, e.cap));
                if (d > 0) {
                    e.cap -= d;
                    graph[e.to][e.rev].cap += d;
                    return d;
                }
            }
        }
        return 0;
    }

    flow_t max_flow(int s, int t) {
        flow_t flow = 0;
        while (bfs(s, t)) {
            iter.assign(graph.size(), 0);
            flow_t f = 0;
            while ((f = dfs(s, t, INF)) > 0)
                flow += f;
        }
        return flow;
    }

    vector<pair<pair<int, int>, int>> get_edges() {
        vector<pair<pair<int, int>, int>> E;
        for (int i = 0; i < graph.size(); i++) {
            for (auto &e : graph[i]) {
                if (e.isrev)
                    continue;
                auto &rev_e = graph[e.to][e.rev];
                E.push_back(mp(mp(i, e.to), rev_e.cap));
            }
        }
        return E;
    }

    void output() {
        for (int i = 0; i < graph.size(); i++) {
            for (auto &e : graph[i]) {
                if (e.isrev)
                    continue;
                auto &rev_e = graph[e.to][e.rev];
                cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
            }
        }
    }
};
// ----- library -------

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int n, m, l;
    cin >> n >> m >> l;
    vector<int> s(l), t(l);
    rep(i, l) cin >> s[i] >> t[i], s[i]--, t[i]--;
    map<pair<int, int>, int> mp;
    rep(i, l) mp[{s[i], n + t[i]}] = i;
    Dinic<int> mf0(n + m + 2);
    rep(i, n) mf0.add_edge(n + m, i, 1);
    rep(i, m) mf0.add_edge(n + i, n + m + 1, 1);
    rep(i, l) mf0.add_edge(s[i], n + t[i], 1);
    int sc = mf0.max_flow(n + m, n + m + 1);
    vector<int> ans(l, 1);
    auto res = mf0.get_edges();
    for (auto e : res) {
        if (e.second)
            ans[mp[{e.first.first, e.first.second}]] = 0;
    }
    rep(j, l) {
        if (!ans[j]) {
            Dinic<int> mf(n + m + 2);
            rep(i, n) mf.add_edge(n + m, i, 1);
            rep(i, m) mf.add_edge(n + i, n + m + 1, 1);
            rep(i, l) if (i != j) mf.add_edge(s[i], n + t[i], 1);
            if (mf.max_flow(n + m, n + m + 1) == sc)
                ans[j] = 1;
        }
    }
    rep(i, l) cout << (ans[i] ? "Yes" : "No") << endl;
}
0