結果
問題 | No.1746 Sqrt Integer Segments |
ユーザー |
![]() |
提出日時 | 2021-11-18 01:27:33 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 300 ms / 2,000 ms |
コード長 | 2,900 bytes |
コンパイル時間 | 2,432 ms |
コンパイル使用メモリ | 213,396 KB |
最終ジャッジ日時 | 2025-01-25 19:16:43 |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 28 |
ソースコード
#include <bits/stdc++.h>#include <atcoder/modint>using namespace std;using namespace atcoder;using mint = modint998244353;//using mint = modint1000000007;using ll = long long;using ld = long double;using pll = pair<ll, ll>;using tlll = tuple<ll, ll, ll>;constexpr ll INF = 1LL << 60;template<class T> bool chmin(T& a, T b) {if (a > b) {a = b; return true;} return false;}template<class T> bool chmax(T& a, T b) {if (a < b) {a = b; return true;} return false;}ll safemod(ll A, ll M) {return (A % M + M) % M;}ll divfloor(ll A, ll B) {if (B < 0) {return divfloor(-A, -B);} return (A - safemod(A, B)) / B;}ll divceil(ll A, ll B) {if (B < 0) {return divceil(-A, -B);} return divfloor(A + B - 1, B);}#define FINALANS(A) do {cout << (A) << '\n'; exit(0);} while (false)class eratosthenes{public:vector<bool> isprime;vector<ll> primes;vector<ll> primeid;vector<ll> minfactor;vector<ll> mobius;eratosthenes(ll N){isprime.assign(N + 1, true);primeid.assign(N + 1, -1);minfactor.assign(N + 1, -1);mobius.assign(N + 1, 1);isprime.at(0) = false, isprime.at(1) = false;minfactor.at(1) = 1;for (ll p = 2; p <= N; p++){if (!isprime.at(p))continue;primeid.at(p) = primes.size();primes.emplace_back(p);minfactor.at(p) = p;mobius.at(p) = -1;for (ll k = 2; k * p <= N; k++){isprime.at(k * p) = false;if (minfactor.at(k * p) == -1)minfactor.at(k * p) = p;if (k % p == 0)mobius.at(k * p) = 0;elsemobius.at(k * p) *= -1;}}}vector<pll> factorize(ll n){vector<pll> ret;while (n > 1){ll p = minfactor.at(n);ll e = 0;while (minfactor.at(n) == p){n /= p;e++;}ret.emplace_back(make_pair(p, e));}return ret;}};vector<ll> Zob;void init(ll M){Zob.resize(M);srand((unsigned)time(NULL));for (ll i = 0; i < M; i++){Zob.at(i) = (rand() % (1LL << 31)) * (1LL << 31) + rand() % (1LL << 31);}}const ll M = 1000000;eratosthenes er(M);ll zobristhash(ll a){auto pes = er.factorize(a);ll ret = 0;for (auto pe : pes){auto [p, e] = pe;if (e % 2 == 1){ret ^= Zob.at(er.primeid.at(p));}}return ret;}int main(){ll N;cin >> N;vector<ll> A(N);for (ll i = 0; i < N; i++){cin >> A.at(i);}init(er.primes.size());vector<ll> B(N);for (ll i = 0; i < N; i++){B.at(i) = zobristhash(A.at(i));}vector<ll> S(N + 1);S.at(0) = 0;for (ll i = 0; i < N; i++){S.at(i + 1) = S.at(i) ^ B.at(i);}map<ll, ll> mp;for (ll i = 0; i < N + 1; i++){mp[S.at(i)]++;}ll ans = 0;for (auto m : mp){ll tmp = m.second * (m.second - 1) / 2;ans += tmp;}cout << ans << endl;}