結果

問題 No.1748 Parking Lot
ユーザー tada721
提出日時 2021-11-19 21:31:12
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 14,341 bytes
コンパイル時間 1,494 ms
コンパイル使用メモリ 117,944 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-12-31 21:28:12
合計ジャッジ時間 2,569 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 22
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'long long int keta(long long int)':
main.cpp:47:1: warning: control reaches end of non-void function [-Wreturn-type]
   47 | }
      | ^
main.cpp: In function 'long long int gcd(long long int, long long int)':
main.cpp:61:1: warning: control reaches end of non-void function [-Wreturn-type]
   61 | }
      | ^
main.cpp: In function 'long long int lcm(long long int, long long int)':
main.cpp:74:1: warning: control reaches end of non-void function [-Wreturn-type]
   74 | }
      | ^

ソースコード

diff #
プレゼンテーションモードにする

#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<stdio.h>
#include<vector>
#include<queue>
#include<math.h>
#include<deque>
#include<set>
#include<tuple>
#include<string>
#include<random>
#include<ctime>
#include<bitset>
#include<iomanip>
#include<limits>
using namespace std;
#define ll long long
#define int long long
#define double long double
#define rep(s,i,n) for(int i=s;i<n;i++)
#define c(n) cout<<n<<endl;
#define ic(n) int n;cin>>n;
#define sc(s) string s;cin>>s;
#define mod 998244353
#define inf 2000000000000000007
#define f first
#define s second
#define mini(c,a,b) *min_element(c+a,c+b)
#define maxi(c,a,b) *max_element(c+a,c+b)
#define pi 3.141592653589793238462643383279
#define e_ 2.718281828459045235360287471352
#define P pair<int,int>
#define upp(a,n,x) upper_bound(a,a+n,x)-a;
#define low(a,n,x) lower_bound(a,a+n,x)-a;
#define UF UnionFind
#define pb push_back
int keta(int x) {
rep(0, i, 30) {
if (x < 10) {
return i + 1;
}
x = x / 10;
}
}
int gcd(int x, int y) {
if (x == 0 || y == 0)return x + y;
int aa = x, bb = y;
rep(0, i, 1000) {
aa = aa % bb;
if (aa == 0) {
return bb;
}
bb = bb % aa;
if (bb == 0) {
return aa;
}
}
}
int lcm(int x, int y) {
int aa = x, bb = y;
rep(0, i, 1000) {
aa = aa % bb;
if (aa == 0) {
return x / bb * y;
}
bb = bb % aa;
if (bb == 0) {
return x / aa * y;
}
}
}
bool prime(int x) {
if (x == 1)return false;
rep(2, i, sqrt(x) + 1) {
if (x % i == 0 && x != i) {
return false;
}
}
return true;
}
int max(int a, int b) {
if (a >= b)return a;
else return b;
}
string maxst(string s, string t) {
int n = s.size();
int m = t.size();
if (n > m)return s;
else if (n < m)return t;
else {
rep(0, i, n) {
if (s[i] > t[i])return s;
if (s[i] < t[i])return t;
}
return s;
}
}
int min(int a, int b) {
if (a >= b)return b;
else return a;
}
int yakuwa(int n) {
int sum = 0;
rep(1, i, sqrt(n + 1)) {
if (n % i == 0)sum += i + n / i;
if (i * i == n)sum -= i;
}
return sum;
}
int poow(int n,int m){
int pro=1;
int nn=n;
while(m){
if(m%2==1)pro=pro*nn%mod;
m=m/2;
nn=nn*nn%mod;
}
return pro;
}
int poow2(int n,int m,int modulo){
int pro=1;
int nn=n;
while(m){
if(m%2==1)pro=pro*nn%modulo;
m=m/2;
nn=nn*nn%modulo;
}
return pro;
}
int inv(int n,int m){
int t=poow(m,mod-2)%mod;
return n*t%mod;
}
int com(int n,int m){
if(n<m)return 0;
int bunsi=1,bunbo=1;
for(int i=n-m+1;i<=n;i++)bunsi=bunsi*(i%mod)%mod;
for(int i=1;i<=m;i++)bunbo=bunbo*(i%mod)%mod;
return inv(bunsi,bunbo);
}
int minpow(int x, int y) {
int sum = 1;
rep(0, i, y)sum *= x;
return sum;
}
int ketawa(int x, int sinsuu) {
int sum = 0;
rep(0, i, 100)sum += (x % poow(sinsuu, i + 1)) / (poow(sinsuu, i));
return sum;
}
int sankaku(int a) {
return a * (a + 1) / 2;
}
int sames(int a[1111111], int n) {
int ans = 0;
rep(0, i, n) {
if (a[i] == a[i + 1]) {
int j = i;
while (a[j + 1] == a[i] && j <= n - 2)j++;
ans += sankaku(j - i);
i = j;
}
}
return ans;
}
struct UnionFind {
vector<int> par;
UnionFind(int n):par(n){
rep(0,i,n)par[i]=i;
}
int root(int x){
if (par[x]==x)return x;
return par[x]=root(par[x]);
}
void unite(int x,int y){
int rx=root(x);
int ry=root(y);
if (rx==ry) return;
par[rx]=ry;
}
bool same(int x,int y){
int rx=root(x);
int ry=root(y);
return rx==ry;
}
};
int dijkstraa[5145];
void dijkstra(int n,int m,int c[7500],int d[7500],int l[7500],int siten,bool mukou){
vector<P> e[5145];
rep(0,i,m){
e[c[i]].pb(P{l[i],d[i]});
if(mukou)e[d[i]].pb(P{l[i],c[i]});
}
rep(0,i,n)dijkstraa[i]=inf;
dijkstraa[siten]=0;
priority_queue<P,vector<P>,greater<P>>pp;
pp.push(P{0,siten});
while(!pp.empty()){
P t=pp.top();pp.pop();
if(t.first!=dijkstraa[t.second])continue;
rep(0,i,e[t.s].size()){
P g=e[t.s][i];
if(dijkstraa[g.second]>t.first+g.first){
dijkstraa[g.second]=t.first+g.first;
pp.push(P{dijkstraa[g.second],g.second});
}
}
}
}
int dijkstra2(int shuten){
return dijkstraa[shuten];
}
vector<int> toposo(vector<vector<int>> G,vector<int> indegree,int n){
vector<int> sorted_vertices;
priority_queue<int,vector<int>,greater<int>> que;
rep(0,i,n)if(!indegree[i])que.push(i);
while(!que.empty()){
int v=que.top();
que.pop();
rep(0,i,G[v].size()){
int u=G[v][i];
indegree[u]-=1;
if(!indegree[u])que.push(u);
}
sorted_vertices.pb(v);
}
return sorted_vertices;
}
struct segtree{
vector<int> dat;
int n;
segtree(int n_):n(),dat(n_*4,inf){
int x=1;
while(n_>=x)x*=2;
n=x;
}
void update(int i,int x){
i+=n-1;
dat[i]=x;
while(i>0){
i=(i-1)/2;
dat[i]=min(dat[i*2+1],dat[i*2+2]);
}
}
int query(int a,int b){return query_sub(a,b,0,0,n);}
int query_sub(int a,int b,int k,int l,int r){
if(r<=a||b<=l)return inf;
else if(a<=l&&r<=b)return dat[k];
else{
int vl=query_sub(a,b,k*2+1,l,(l+r)/2);
int vr=query_sub(a,b,k*2+2,(l+r)/2,r);
return min(vl,vr);
}
}
int rightest(int a,int b,int x){return rightest_sub(a,b,x,0,0,n);}
int rightest_sub(int a,int b,int x,int k,int l,int r){
if(dat[k]>x||r<=a||b<=l)return a-1;
else if(k>=n-1)return k-(n-1);
else{
int vr=rightest_sub(a,b,x,2*k+2,(l+r)/2,r);
if(vr!=a-1)return vr;
else return rightest_sub(a,b,x,2*k+1,l,(l+r)/2);
}
}
int leftest(int a,int b,int x){return leftest_sub(a,b,x,0,0,n);}
int leftest_sub(int a,int b,int x,int k,int l,int r){
if(dat[k]>x||r<=a||b<=l)return b;
else if(k>=n-1)return k-(n-1);
else{
int vl=leftest_sub(a,b,x,2*k+1,l,(l+r)/2);
if(vl!=b)return vl;
else return leftest_sub(a,b,x,2*k+2,(l+r)/2,r);
}
}
};
template<int MOD> struct Fp {
long long val;
constexpr Fp(long long v = 0) noexcept : val(v % MOD) {
if (val < 0) v += MOD;
}
constexpr int getmod() { return MOD; }
constexpr Fp operator - () const noexcept {
return val ? MOD - val : 0;
}
constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
constexpr Fp& operator += (const Fp& r) noexcept {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -= (const Fp& r) noexcept {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp& operator *= (const Fp& r) noexcept {
val = val * r.val % MOD;
return *this;
}
constexpr Fp& operator /= (const Fp& r) noexcept {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
constexpr bool operator == (const Fp& r) const noexcept {
return this->val == r.val;
}
constexpr bool operator != (const Fp& r) const noexcept {
return this->val != r.val;
}
friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {
return os << x.val;
}
friend constexpr istream& operator >> (istream &is, Fp<MOD>& x) noexcept {
return is >> x.val;
}
friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {
if (n == 0) return 1;
auto t = modpow(a, n / 2);
t = t * t;
if (n & 1) t = t * a;
return t;
}
};
template<typename T,T INF>
struct Beats {
int size = 1;
private:
vector<T> mx, smx, mxc;
vector<T> mn, smn, mnc;
vector<T> sum, lazy;
vector<bool> flag;
void update(int k) {
sum[k] = sum[k * 2 + 1] + sum[k * 2 + 2];
mx[k] = max(mx[2 * k + 1], mx[2 * k + 2]);
if (mx[2 * k + 1] < mx[2 * k + 2]) {
mxc[k] = mxc[2 * k + 2];
smx[k] = max(mx[2 * k + 1], smx[2 * k + 2]);
} else if (mx[2 * k + 1] > mx[2 * k + 2]) {
mxc[k] = mxc[2 * k + 1];
smx[k] = max(smx[2 * k + 1], mx[2 * k + 2]);
} else {
mxc[k] = mxc[2 * k + 1] + mxc[2 * k + 2];
smx[k] = max(smx[2 * k + 1], smx[2 * k + 2]);
}
mn[k] = min(mn[2 * k + 1], mn[2 * k + 2]);
if (mn[2 * k + 1] < mn[2 * k + 2]) {
mnc[k] = mnc[2 * k + 1];
smn[k] = min(smn[2 * k + 1], mn[2 * k + 2]);
} else if (mn[2 * k + 1] > mn[2 * k + 2]) {
mnc[k] = mnc[2 * k + 2];
smn[k] = min(mn[2 * k + 1], smn[2 * k + 2]);
} else {
mnc[k] = mnc[2 * k + 1] + mnc[2 * k + 2];
smn[k] = min(smn[2 * k + 1], smn[2 * k + 2]);
}
}
void updateNodeMax(int k, T x) {
sum[k] += (x - mx[k]) * mxc[k];
if (mx[k] == mn[k]) {
mx[k] = mn[k] = x;
} else if (mx[k] == smn[k]) {
mx[k] = smn[k] = x;
} else {
mx[k] = x;
}
}
void updateNodeMin(int k, T x) {
sum[k] += (x - mn[k]) * mnc[k];
if (mx[k] == mn[k]) {
mx[k] = mn[k] = x;
} else if (smx[k] == mn[k]) {
smx[k] = mn[k] = x;
} else {
mn[k] = x;
}
}
void updateNodeAdd(int k, int len, T x) {
mx[k] += x;
if (smx[k] != -INF) smx[k] += x;
mn[k] += x;
if (smn[k] != INF) smn[k] += x;
sum[k] += x * len;
lazy[k] += x;
}
void updateNodeAssign(int k, int len, T x) {
mx[k] = x;
smx[k] = -INF;
mxc[k] = len;
mn[k] = x;
smn[k] = INF;
mnc[k] = len;
sum[k] = x * len;
lazy[k] = x;
flag[k] = true;
}
void push(int k, int len) {
if (k >= size - 1) return;
if (flag[k] || lazy[k] != 0) {
if (flag[k]) {
updateNodeAssign(k * 2 + 1, len / 2, lazy[k]);
updateNodeAssign(k * 2 + 2, len / 2, lazy[k]);
} else {
updateNodeAdd(k * 2 + 1, len / 2, lazy[k]);
updateNodeAdd(k * 2 + 2, len / 2, lazy[k]);
}
lazy[k] = 0;
flag[k] = false;
}
if (mx[k * 2 + 1] > mx[k]) updateNodeMax(k * 2 + 1, mx[k]);
if (mx[k * 2 + 2] > mx[k]) updateNodeMax(k * 2 + 2, mx[k]);
if (mn[k * 2 + 1] < mn[k]) updateNodeMin(k * 2 + 1, mn[k]);
if (mn[k * 2 + 2] < mn[k]) updateNodeMin(k * 2 + 2, mn[k]);
}
public:
void updateMin(int a, int b, T x, int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
if (r <= a || b <= l || mx[k] <= x) return;
if (a <= l && r <= b && smx[k] < x) {
updateNodeMax(k, x);
return;
}
push(k, r - l);
updateMin(a, b, x, k * 2 + 1, l, (l + r) / 2);
updateMin(a, b, x, k * 2 + 2, (l + r) / 2, r);
update(k);
}
void updateMax(int a, int b, T x, int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
if (r <= a || b <= l || mn[k] >= x) return;
if (a <= l && r <= b && smn[k] > x) {
updateNodeMin(k, x);
return;
}
push(k, r - l);
updateMax(a, b, x, k * 2 + 1, l, (l + r) / 2);
updateMax(a, b, x, k * 2 + 2, (l + r) / 2, r);
update(k);
}
void updateAdd(int a, int b, T x, int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
if (r <= a || b <= l) return;
if (a <= l && r <= b) {
updateNodeAdd(k, r - l, x);
return;
}
push(k, r - l);
updateAdd(a, b, x, k * 2 + 1, l, (l + r) / 2);
updateAdd(a, b, x, k * 2 + 2, (l + r) / 2, r);
update(k);
}
void updateAssign(int a, int b, T x, int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
if (r <= a || b <= l) return;
if (a <= l && r <= b) {
updateNodeAssign(k, r - l, x);
return;
}
push(k, r - l);
updateAssign(a, b, x, k * 2 + 1, l, (l + r) / 2);
updateAssign(a, b, x, k * 2 + 2, (l + r) / 2, r);
update(k);
}
void set(int k, T x) {
k += size - 1;
mx[k] = x;
mn[k] = x;
sum[k] = x;
}
void init() {
for (T i = size - 2; i >= 0; i--) update(i);
}
T queryMin(int a, int b, int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
if (r <= a || b <= l) return INF;
if (a <= l && r <= b) return mn[k];
push(k, r - l);
T lv = queryMin(a, b, k * 2 + 1, l, (l + r) / 2);
T rv = queryMin(a, b, k * 2 + 2, (l + r) / 2, r);
return min(lv, rv);
}
T queryMax(int a, int b, int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
if (r <= a || b <= l) return -INF;
if (a <= l && r <= b) return mx[k];
push(k, r - l);
T lv = queryMax(a, b, k * 2 + 1, l, (l + r) / 2);
T rv = queryMax(a, b, k * 2 + 2, (l + r) / 2, r);
return max(lv, rv);
}
T querySum(int a, int b, int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
if (r <= a || b <= l) return 0;
if (a <= l && r <= b) return sum[k];
push(k, r - l);
T lv = querySum(a, b, k * 2 + 1, l, (l + r) / 2);
T rv = querySum(a, b, k * 2 + 2, (l + r) / 2, r);
return lv + rv;
}
Beats(int x) {
while (size < x) size *= 2;
mx.resize(size * 2 - 1, -INF + 1);
smx.resize(size * 2 - 1, -INF);
mxc.resize(size * 2 - 1, 1);
mn.resize(size * 2 - 1, INF - 1);
smn.resize(size * 2 - 1, INF);
mnc.resize(size * 2 - 1, 1);
sum.resize(size * 2 - 1);
lazy.resize(size * 2 - 1);
flag.resize(size * 2 - 1);
}
};
int fai(int n) {
if (n == 0) return 0;
int ans = n;
for (int x = 2; x*x <= n; ++x) {
if (n % x == 0) {
ans -= ans / x;
while (n % x == 0) n /= x;
}
}
if (n > 1) ans -= ans / n;
return ans;
}
double minn(double a,double b){
if(a<b)return a;
else return b;
}
using mint=Fp<mod>;
signed main(){
ic(n) ic(k)
if(k==n-1)c(n)
else if(n==1)c(n)
else c(n-1)
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0