結果

問題 No.1754 T-block Tiling
ユーザー tada721tada721
提出日時 2021-11-20 13:16:43
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 14,202 bytes
コンパイル時間 1,325 ms
コンパイル使用メモリ 117,516 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-11 06:55:54
合計ジャッジ時間 1,723 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'long long int keta(long long int)':
main.cpp:47:1: warning: control reaches end of non-void function [-Wreturn-type]
   47 | }
      | ^
main.cpp: In function 'long long int gcd(long long int, long long int)':
main.cpp:61:1: warning: control reaches end of non-void function [-Wreturn-type]
   61 | }
      | ^
main.cpp: In function 'long long int lcm(long long int, long long int)':
main.cpp:74:1: warning: control reaches end of non-void function [-Wreturn-type]
   74 | }
      | ^

ソースコード

diff #

#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<stdio.h>
#include<vector>
#include<queue>
#include<math.h>
#include<deque>
#include<set>
#include<tuple>
#include<string>
#include<random>
#include<ctime>
#include<bitset>
#include<iomanip>
#include<limits>
using namespace std;
#define ll long long
#define int long long
#define double long double
#define rep(s,i,n) for(int i=s;i<n;i++)
#define c(n) cout<<n<<endl;
#define ic(n) int n;cin>>n;
#define sc(s) string s;cin>>s;
#define mod 998244353
#define inf 2000000000000000007
#define f first
#define s second
#define mini(c,a,b) *min_element(c+a,c+b)
#define maxi(c,a,b) *max_element(c+a,c+b)
#define pi 3.141592653589793238462643383279
#define e_ 2.718281828459045235360287471352
#define P pair<int,int>
#define upp(a,n,x) upper_bound(a,a+n,x)-a;
#define low(a,n,x) lower_bound(a,a+n,x)-a;
#define UF UnionFind 
#define pb push_back
int keta(int x) {
	rep(0, i, 30) {
		if (x < 10) {
			return i + 1;
		}
		x = x / 10;
	}
}
int gcd(int x, int y) {
	if (x == 0 || y == 0)return x + y;
	int aa = x, bb = y;
	rep(0, i, 1000) {
		aa = aa % bb;
		if (aa == 0) {
			return bb;
		}
		bb = bb % aa;
		if (bb == 0) {
			return aa;
		}
	}
}
int lcm(int x, int y) {
	int aa = x, bb = y;
	rep(0, i, 1000) {
		aa = aa % bb;
		if (aa == 0) {
			return x / bb * y;
		}
		bb = bb % aa;
		if (bb == 0) {
			return x / aa * y;
		}
	}
}
bool prime(int x) {
	if (x == 1)return false;
	rep(2, i, sqrt(x) + 1) {
		if (x % i == 0 && x != i) {
			return false;
		}
	}
	return true;
}
int max(int a, int b) {
	if (a >= b)return a;
	else return b;
}
string maxst(string s, string t) {
	int n = s.size();
	int m = t.size();
	if (n > m)return s;
	else if (n < m)return t;
	else {
		rep(0, i, n) {
			if (s[i] > t[i])return s;
			if (s[i] < t[i])return t;
		}
		return s;
	}
}
int min(int a, int b) {
	if (a >= b)return b;
	else return a;
}
int yakuwa(int n) {
	int sum = 0;
	rep(1, i, sqrt(n + 1)) {
		if (n % i == 0)sum += i + n / i;
		if (i * i == n)sum -= i;
	}
	return sum;
}
int poow(int n,int m){
	int pro=1;
	int nn=n;
	while(m){
		if(m%2==1)pro=pro*nn%mod;
		m=m/2;
		nn=nn*nn%mod;
	}
	return pro;
}
int poow2(int n,int m,int modulo){
	int pro=1;
	int nn=n;
	while(m){
		if(m%2==1)pro=pro*nn%modulo;
		m=m/2;
		nn=nn*nn%modulo;
	}
	return pro;
}
int inv(int n,int m){
	int t=poow(m,mod-2)%mod;
	return n*t%mod;
}
int com(int n,int m){
	if(n<m)return 0;
	int bunsi=1,bunbo=1;	
	for(int i=n-m+1;i<=n;i++)bunsi=bunsi*(i%mod)%mod;
	for(int i=1;i<=m;i++)bunbo=bunbo*(i%mod)%mod;
	return inv(bunsi,bunbo);
}
int minpow(int x, int y) {
	int sum = 1;
	rep(0, i, y)sum *= x;
	return sum;
}
int ketawa(int x, int sinsuu) {
	int sum = 0;
	rep(0, i, 100)sum += (x % poow(sinsuu, i + 1)) / (poow(sinsuu, i));
	return sum;
}
int sankaku(int a) {
	return a * (a + 1) / 2;
}
int sames(int a[1111111], int n) {
	int ans = 0;
	rep(0, i, n) {
		if (a[i] == a[i + 1]) {
			int j = i;
			while (a[j + 1] == a[i] && j <= n - 2)j++;
			ans += sankaku(j - i);
			i = j;
		}
	}
	return ans;
}
struct UnionFind {
	vector<int> par;
	UnionFind(int n):par(n){
		rep(0,i,n)par[i]=i;
	}
	int root(int x){
		if (par[x]==x)return x;
		return par[x]=root(par[x]);
	}
	void unite(int x,int y){
		int rx=root(x);
		int ry=root(y);
		if (rx==ry) return; 
		par[rx]=ry;
	}
	bool same(int x,int y){
		int rx=root(x);
		int ry=root(y);
		return rx==ry;
	}
};	
int dijkstraa[5145];
void dijkstra(int n,int m,int c[7500],int d[7500],int l[7500],int siten,bool mukou){
	vector<P> e[5145];
	rep(0,i,m){
		e[c[i]].pb(P{l[i],d[i]});
		if(mukou)e[d[i]].pb(P{l[i],c[i]});
	}
	rep(0,i,n)dijkstraa[i]=inf;
	dijkstraa[siten]=0;
	priority_queue<P,vector<P>,greater<P>>pp;
	pp.push(P{0,siten});
	while(!pp.empty()){
		P t=pp.top();pp.pop();
		if(t.first!=dijkstraa[t.second])continue;
		rep(0,i,e[t.s].size()){
			P g=e[t.s][i];
			if(dijkstraa[g.second]>t.first+g.first){
				dijkstraa[g.second]=t.first+g.first;
				pp.push(P{dijkstraa[g.second],g.second});				
			}	
		}
	}
}
int dijkstra2(int shuten){
	return dijkstraa[shuten];
}
vector<int> toposo(vector<vector<int>> G,vector<int> indegree,int n){
	vector<int> sorted_vertices;
	priority_queue<int,vector<int>,greater<int>> que;
	rep(0,i,n)if(!indegree[i])que.push(i);
	while(!que.empty()){
		int v=que.top();
		que.pop();
		rep(0,i,G[v].size()){
			int u=G[v][i];
			indegree[u]-=1;
			if(!indegree[u])que.push(u);
		}
		sorted_vertices.pb(v);
	}
	return sorted_vertices;
}
struct segtree{
	vector<int> dat;
	int n;
	segtree(int n_):n(),dat(n_*4,inf){
		int x=1;
		while(n_>=x)x*=2;
		n=x;
	}
	void update(int i,int x){
		i+=n-1;
		dat[i]=x;
		while(i>0){
			i=(i-1)/2;
			dat[i]=min(dat[i*2+1],dat[i*2+2]);
		}
	}
	int query(int a,int b){return query_sub(a,b,0,0,n);}
	int query_sub(int a,int b,int k,int l,int r){
		if(r<=a||b<=l)return inf;
		else if(a<=l&&r<=b)return dat[k];
		else{
			int vl=query_sub(a,b,k*2+1,l,(l+r)/2);
			int vr=query_sub(a,b,k*2+2,(l+r)/2,r);
			return min(vl,vr);
		}
	}
	int rightest(int a,int b,int x){return rightest_sub(a,b,x,0,0,n);}
	int rightest_sub(int a,int b,int x,int k,int l,int r){
		if(dat[k]>x||r<=a||b<=l)return a-1;
		else if(k>=n-1)return k-(n-1);
		else{
			int vr=rightest_sub(a,b,x,2*k+2,(l+r)/2,r);
			if(vr!=a-1)return vr;
			else return rightest_sub(a,b,x,2*k+1,l,(l+r)/2);
		}	
	}
	int leftest(int a,int b,int x){return leftest_sub(a,b,x,0,0,n);}
	int leftest_sub(int a,int b,int x,int k,int l,int r){
		if(dat[k]>x||r<=a||b<=l)return b;
		else if(k>=n-1)return k-(n-1);
		else{
			int vl=leftest_sub(a,b,x,2*k+1,l,(l+r)/2);
			if(vl!=b)return vl;
			else return leftest_sub(a,b,x,2*k+2,(l+r)/2,r);
		}	
	}
};
template<int MOD> struct Fp {
    long long val;
    constexpr Fp(long long v = 0) noexcept : val(v % MOD) {
        if (val < 0) v += MOD;
    }
    constexpr int getmod() { return MOD; }
    constexpr Fp operator - () const noexcept {
        return val ? MOD - val : 0;
    }
    constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
    constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
    constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
    constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
    constexpr Fp& operator += (const Fp& r) noexcept {
        val += r.val;
        if (val >= MOD) val -= MOD;
        return *this;
    }
    constexpr Fp& operator -= (const Fp& r) noexcept {
        val -= r.val;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr Fp& operator *= (const Fp& r) noexcept {
        val = val * r.val % MOD;
        return *this;
    }
    constexpr Fp& operator /= (const Fp& r) noexcept {
        long long a = r.val, b = MOD, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b; swap(a, b);
            u -= t * v; swap(u, v);
        }
        val = val * u % MOD;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr bool operator == (const Fp& r) const noexcept {
        return this->val == r.val;
    }
    constexpr bool operator != (const Fp& r) const noexcept {
        return this->val != r.val;
    }
    friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {
        return os << x.val;
    }
    friend constexpr istream& operator >> (istream &is, Fp<MOD>& x) noexcept {
        return is >> x.val;
    }
    friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {
        if (n == 0) return 1;
        auto t = modpow(a, n / 2);
        t = t * t;
        if (n & 1) t = t * a;
        return t;
    }
};
template<typename T,T INF>
struct Beats {
    int size = 1;
 
   private:
    vector<T> mx, smx, mxc;
    vector<T> mn, smn, mnc;
    vector<T> sum, lazy;
    vector<bool> flag;
 
    void update(int k) {
        sum[k] = sum[k * 2 + 1] + sum[k * 2 + 2];
 
        mx[k] = max(mx[2 * k + 1], mx[2 * k + 2]);
        if (mx[2 * k + 1] < mx[2 * k + 2]) {
            mxc[k] = mxc[2 * k + 2];
            smx[k] = max(mx[2 * k + 1], smx[2 * k + 2]);
        } else if (mx[2 * k + 1] > mx[2 * k + 2]) {
            mxc[k] = mxc[2 * k + 1];
            smx[k] = max(smx[2 * k + 1], mx[2 * k + 2]);
        } else {
            mxc[k] = mxc[2 * k + 1] + mxc[2 * k + 2];
            smx[k] = max(smx[2 * k + 1], smx[2 * k + 2]);
        }
 
        mn[k] = min(mn[2 * k + 1], mn[2 * k + 2]);
        if (mn[2 * k + 1] < mn[2 * k + 2]) {
            mnc[k] = mnc[2 * k + 1];
            smn[k] = min(smn[2 * k + 1], mn[2 * k + 2]);
        } else if (mn[2 * k + 1] > mn[2 * k + 2]) {
            mnc[k] = mnc[2 * k + 2];
            smn[k] = min(mn[2 * k + 1], smn[2 * k + 2]);
        } else {
            mnc[k] = mnc[2 * k + 1] + mnc[2 * k + 2];
            smn[k] = min(smn[2 * k + 1], smn[2 * k + 2]);
        }
    }
    void updateNodeMax(int k, T x) {
        sum[k] += (x - mx[k]) * mxc[k];
        if (mx[k] == mn[k]) {
            mx[k] = mn[k] = x;
        } else if (mx[k] == smn[k]) {
            mx[k] = smn[k] = x;
        } else {
            mx[k] = x;
        }
    }
    void updateNodeMin(int k, T x) {
        sum[k] += (x - mn[k]) * mnc[k];
        if (mx[k] == mn[k]) {
            mx[k] = mn[k] = x;
        } else if (smx[k] == mn[k]) {
            smx[k] = mn[k] = x;
        } else {
            mn[k] = x;
        }
    }
    void updateNodeAdd(int k, int len, T x) {
        mx[k] += x;
        if (smx[k] != -INF) smx[k] += x;
        mn[k] += x;
        if (smn[k] != INF) smn[k] += x;
        sum[k] += x * len;
        lazy[k] += x;
    }
    void updateNodeAssign(int k, int len, T x) {
        mx[k] = x;
        smx[k] = -INF;
        mxc[k] = len;
        mn[k] = x;
        smn[k] = INF;
        mnc[k] = len;
        sum[k] = x * len;
        lazy[k] = x;
        flag[k] = true;
    }
    void push(int k, int len) {
        if (k >= size - 1) return;
        if (flag[k] || lazy[k] != 0) {
            if (flag[k]) {
                updateNodeAssign(k * 2 + 1, len / 2, lazy[k]);
                updateNodeAssign(k * 2 + 2, len / 2, lazy[k]);
            } else {
                updateNodeAdd(k * 2 + 1, len / 2, lazy[k]);
                updateNodeAdd(k * 2 + 2, len / 2, lazy[k]);
            }
            lazy[k] = 0;
            flag[k] = false;
        }
        if (mx[k * 2 + 1] > mx[k]) updateNodeMax(k * 2 + 1, mx[k]);
        if (mx[k * 2 + 2] > mx[k]) updateNodeMax(k * 2 + 2, mx[k]);
        if (mn[k * 2 + 1] < mn[k]) updateNodeMin(k * 2 + 1, mn[k]);
        if (mn[k * 2 + 2] < mn[k]) updateNodeMin(k * 2 + 2, mn[k]);
    }
 
   public:
    void updateMin(int a, int b, T x, int k = 0, int l = 0, int r = -1) {
        if (r == -1) r = size;
        if (r <= a || b <= l || mx[k] <= x) return;
        if (a <= l && r <= b && smx[k] < x) {
            updateNodeMax(k, x);
            return;
        }
        push(k, r - l);
        updateMin(a, b, x, k * 2 + 1, l, (l + r) / 2);
        updateMin(a, b, x, k * 2 + 2, (l + r) / 2, r);
        update(k);
    }
    void updateMax(int a, int b, T x, int k = 0, int l = 0, int r = -1) {
        if (r == -1) r = size;
        if (r <= a || b <= l || mn[k] >= x) return;
        if (a <= l && r <= b && smn[k] > x) {
            updateNodeMin(k, x);
            return;
        }
        push(k, r - l);
        updateMax(a, b, x, k * 2 + 1, l, (l + r) / 2);
        updateMax(a, b, x, k * 2 + 2, (l + r) / 2, r);
        update(k);
    }
    void updateAdd(int a, int b, T x, int k = 0, int l = 0, int r = -1) {
        if (r == -1) r = size;
        if (r <= a || b <= l) return;
        if (a <= l && r <= b) {
            updateNodeAdd(k, r - l, x);
            return;
        }
        push(k, r - l);
        updateAdd(a, b, x, k * 2 + 1, l, (l + r) / 2);
        updateAdd(a, b, x, k * 2 + 2, (l + r) / 2, r);
        update(k);
    }
    void updateAssign(int a, int b, T x, int k = 0, int l = 0, int r = -1) {
        if (r == -1) r = size;
        if (r <= a || b <= l) return;
        if (a <= l && r <= b) {
            updateNodeAssign(k, r - l, x);
            return;
        }
        push(k, r - l);
        updateAssign(a, b, x, k * 2 + 1, l, (l + r) / 2);
        updateAssign(a, b, x, k * 2 + 2, (l + r) / 2, r);
        update(k);
    }
 
    void set(int k, T x) {
        k += size - 1;
        mx[k] = x;
        mn[k] = x;
        sum[k] = x;
    }
    void init() {
        for (T i = size - 2; i >= 0; i--) update(i);
    }
    T queryMin(int a, int b, int k = 0, int l = 0, int r = -1) {
        if (r == -1) r = size;
        if (r <= a || b <= l) return INF;
        if (a <= l && r <= b) return mn[k];
        push(k, r - l);
        T lv = queryMin(a, b, k * 2 + 1, l, (l + r) / 2);
        T rv = queryMin(a, b, k * 2 + 2, (l + r) / 2, r);
        return min(lv, rv);
    }
    T queryMax(int a, int b, int k = 0, int l = 0, int r = -1) {
        if (r == -1) r = size;
        if (r <= a || b <= l) return -INF;
        if (a <= l && r <= b) return mx[k];
        push(k, r - l);
        T lv = queryMax(a, b, k * 2 + 1, l, (l + r) / 2);
        T rv = queryMax(a, b, k * 2 + 2, (l + r) / 2, r);
        return max(lv, rv);
    }
    T querySum(int a, int b, int k = 0, int l = 0, int r = -1) {
        if (r == -1) r = size;
        if (r <= a || b <= l) return 0;
        if (a <= l && r <= b) return sum[k];
        push(k, r - l);
        T lv = querySum(a, b, k * 2 + 1, l, (l + r) / 2);
        T rv = querySum(a, b, k * 2 + 2, (l + r) / 2, r);
        return lv + rv;
    }
    Beats(int x) {
        while (size < x) size *= 2;
        mx.resize(size * 2 - 1, -INF + 1);
        smx.resize(size * 2 - 1, -INF);
        mxc.resize(size * 2 - 1, 1);
        mn.resize(size * 2 - 1, INF - 1);
        smn.resize(size * 2 - 1, INF);
        mnc.resize(size * 2 - 1, 1);
        sum.resize(size * 2 - 1);
        lazy.resize(size * 2 - 1);
        flag.resize(size * 2 - 1);
    }
};
using mint=Fp<mod>;
mint dp[114];
mint solve(int n){
	rep(0,i,110)dp[i]=0;
	dp[0]=1;
	dp[1]=2;
	rep(2,i,n+1){
		dp[i]+=dp[i-1]*2;
		rep(0,j,i-1){
			dp[i]+=dp[j]*2;
		}
	}
	return dp[n];
}
signed main(){
	ic(t)
	while(t--){
		ic(n)
		c(solve(n))
	}
}
0