結果

問題 No.275 中央値を求めよ
ユーザー UMRgurashiUMRgurashi
提出日時 2021-11-24 21:05:04
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 12,373 bytes
コンパイル時間 4,526 ms
コンパイル使用メモリ 239,488 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-27 06:54:38
合計ジャッジ時間 5,650 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 AC 2 ms
5,376 KB
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 WA -
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 AC 2 ms
5,376 KB
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

#include <atcoder/all>
using namespace atcoder;
//#pragma GCC target ("avx2")
//#pragma GCC optimization("O3")
//#pragma GCC optimization("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")

#define int long long
#define double long double
#define stoi stoll
#define endl "\n"
using std::abs;

using namespace std;

//constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;
constexpr double PI = 3.14159265358979323846;
const  int INF = 1LL << 60;
const int dx[4] = { 0, 1, 0, -1 };
const int dy[4] = { -1, 0, 1, 0 };
#define rep(i,n) for(int i=0;i<n;++i)
#define REP(i,n) for(int i=1;i<=n;i++)
#define krep(i,k,n) for(int i=(k);i<n+k;i++)
#define Krep(i,k,n) for(int i=(k);i<n;i++)
#define rrep(i,n) for(int i=n-1;i>=0;i--)
#define Rrep(i,n) for(int i=n;i>0;i--)
#define LAST(x) x[x.size()-1]
#define ALL(x) (x).begin(),(x).end()
#define MAX(x) *max_element(ALL(x))
#define MIN(x) *min_element(ALL(x)
#define RUD(a,b) (((a)+(b)-1)/(b))
#define sum1_n(n) ((n)*(n+1)/2)
#define SUM1n2(n) (n*(2*n+1)*(n+1))/6
#define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1))
#define SZ(x) ((int)(x).size())
#define PB push_back
#define Fi first
#define Se second

typedef vector<int> vint;
typedef vector<vint> vvint;
typedef vector<vvint> vvvint;

typedef vector<double> vdouble;
typedef vector<vdouble> vvdouble;
typedef vector<vvdouble> vvvdouble;

typedef vector<string> vstring;

typedef vector<bool> vbool;
typedef vector<vbool> vvbool;
typedef vector<vvbool> vvvbool;

typedef map<int, int> mapint;
typedef pair<int, int> pint;
typedef pair<string, string> pstring;
typedef pair<vstring,vstring> pvstring;
typedef tuple<int, int, int>tint;

typedef vector<pint> vpint;
typedef vector<vpint> vvpint;

typedef vector<tint> vtint;
typedef vector<vtint> vvtint;

int factorial(int a) {
	if (a == 0)
		return 1;
	else
		return a * factorial(a - 1);
}
int nPr(int n, int r) {
	int s = n - r + 1;
	int sum = 1;
	for (int i = s; i <= n; i++)
		sum *= i;
	return sum;
}
int GCD(int a, int b) {
	if (b == 0) return a;
	return GCD(b, a % b);
}
int LCM(int a, int b) {
	return  a / GCD(a, b) * b;
}

double LOG(int a, int b) {
	return log(b) / log(a);
}
double DISTANCE(int x1, int y1, int x2, int y2) {
	return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}

inline bool BETWEEN(int x, int min, int max) {
	if (min <= x && x <= max)
		return true;
	else
		return false;
}
inline bool between(int x, int min, int max) {
	if (min < x && x < max) return true;
	else return false;
}
inline bool BETWEEN2(int i,int j,int H,int W) {
	if (BETWEEN(i,0,H-1)&&BETWEEN(j,0,W-1)) return true;
	else return false;
}
template<class T>
inline bool chmin(T& a, T b) {
	if (a > b) {
		a = b;
		return true;
	}
	return false;
}
template<class T>
inline bool chmax(T& a, T b) {
	if (a < b) {
		a = b;
		return true;
	}
	return false;
}

inline bool bit(int x, int i) {
	return x >> i & 1;
}

int in() { int x; cin >> x; return x; }
string ins() { string x; cin >> x; return x; }
vint invi(int N) { 
	vint x(N); 
	rep(i, N)cin >> x[i];
	return x;
}
#define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl

template<typename T,typename U>
struct my_pair :std::pair<T,U>{
    using std::pair<T,U>::pair;
    my_pair<T,U> operator+(const my_pair<T,U> p){
        return my_pair<T,U>(this->first + p.first, this->second + p.second);
    }
	my_pair<T, U> operator-(const my_pair<T, U> p) {
		return my_pair<T, U>(this->first - p.first, this->second - p.second);
	}
    void print(){
        cout << this->first << " " << this->second << endl;
    }
};

template<int MOD> struct Fp {
	long long val;
	constexpr Fp(long long v = 0) noexcept : val(v% MOD) {
		if (val < 0) val += MOD;
	}
	constexpr int getmod() const { return MOD; }
	constexpr Fp operator - () const noexcept {
		return val ? MOD - val : 0;
	}
	constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
	constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
	constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
	constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
	constexpr Fp& operator += (const Fp& r) noexcept {
		val += r.val;
		if (val >= MOD) val -= MOD;
		return *this;
	}
	constexpr Fp& operator -= (const Fp& r) noexcept {
		val -= r.val;
		if (val < 0) val += MOD;
		return *this;
	}
	constexpr Fp& operator *= (const Fp& r) noexcept {
		val = val * r.val % MOD;
		return *this;
	}
	constexpr Fp& operator /= (const Fp& r) noexcept {
		long long a = r.val, b = MOD, u = 1, v = 0;
		while (b) {
			long long t = a / b;
			a -= t * b, swap(a, b);
			u -= t * v, swap(u, v);
		}
		val = val * u % MOD;
		if (val < 0) val += MOD;
		return *this;
	}
	constexpr bool operator == (const Fp& r) const noexcept {
		return this->val == r.val;
	}
	constexpr bool operator != (const Fp& r) const noexcept {
		return this->val != r.val;
	}
	friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {
		is >> x.val;
		x.val %= MOD;
		if (x.val < 0) x.val += MOD;
		return is;
	}
	friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {
		return os << x.val;
	}
	friend constexpr Fp<MOD> modpow(const Fp<MOD>& r, long long n) noexcept {
		if (n == 0) return 1;
		if (n < 0) return modpow(modinv(r), -n);
		auto t = modpow(r, n / 2);
		t = t * t;
		if (n & 1) t = t * r;
		return t;
	}
	friend constexpr Fp<MOD> modinv(const Fp<MOD>& r) noexcept {
		long long a = r.val, b = MOD, u = 1, v = 0;
		while (b) {
			long long t = a / b;
			a -= t * b, swap(a, b);
			u -= t * v, swap(u, v);
		}
		return Fp<MOD>(u);
	}
};
using mint = Fp<MOD>;


const int MAXR = 110000;
int fac[MAXR], finv[MAXR], inv[MAXR];
void COMinit() {
	fac[0] = fac[1] = 1;
	finv[0] = finv[1] = 1;
	inv[1] = 1;
	for (int i = 2; i < MAXR; i++) {
		fac[i] = fac[i - 1] * i % MOD;
		inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
		finv[i] = finv[i - 1] * inv[i] % MOD;
	}
}

int nCr(int n, int k) {
	if (n < k)
		return 0;
	if (n < 0 || k < 0)
		return 0;
	return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}

mint nCrm(long long N, long long K) {
	mint res = 1;
	if (N < K)
		return 0;
	if (N < 0 || K < 0)
		return 0;
	for (long long n = 0; n < K; ++n) {
		res *= (N - n);
		res /= (n + 1);
	}
	return res;
}
int nCr2(int n, int k) {
	//MODらない奴
	if (n < k)
		return 0;
	if (n < 0 || k < 0)
		return 1;
	int ans = 1;
	REP(i, k) {
		ans *= n--;
		ans /= i;
	}
	return ans;
}

vpint prime_factorize(int N) {
	vpint  res;
	for (int i = 2; i * i <= N; i++) {
		if (N % i != 0)
			continue;
		int ex = 0;
		while (N % i == 0) {
			++ex;
			N /= i;
		}
		res.push_back({ i, ex });
	}
	if (N != 1)
		res.push_back({ N, 1 });
	return res;
}
double median(vint a) {
	int N = a.size();
	if (N % 2 == 1)
		return (double)a[N / 2];
	else
		return (double)(a[N / 2 - 1] + a[N / 2]) / 2;
}




typedef vector<mint> vmint;
typedef vector<vmint> vvmint;


int ipow(int x, int n) {
	int ans = 1;
	while (n > 0) {
		if (n & 1) ans *= x;
		x *= x;
		n >>= 1;
	}
	return ans;
}


string base_to_k(int n, int k) {
	//n(10)→n(k)
	string ans = "";
	while (n) {
		ans += to_string(n % k);
		n /= k;
	}
	reverse(ALL(ans));
	return ans;
}


string base(string n, int k, int l) {
	//n(k)→n(l)
	return n;
}


int mpow(int x, int n, int M) {
	int ans = 1;
	while (n > 0) {
		if (n & 1) ans = ans * x % M;
		x = x * x % M;
		n >>= 1;
	}
	return ans%M;
}


string base_from_k(string n, int k) {
	//n(k)→n(10)
	int ans = 0;
	int N = n.size();
	rep(i, N)
		ans += (n[N - 1 - i] - '0') * ipow(k, i);
	return to_string(ans);
}

template <typename T>
vector<T> compress(vector<T>& X) {
	vector<T> vals = X;
	sort(ALL(vals));
	vals.erase(unique(ALL(vals)), vals.end());
	rep(i,SZ(X))
		X[i] = lower_bound(ALL(vals), X[i]) - vals.begin();
	return vals;
}



typedef complex<double> con;

template< typename G >
struct LowLink {
	const G& g;
	vector< int > used, ord, low;
	vector< int > articulation;
	vector< pair< int, int > > bridge;

	LowLink(const G& g) : g(g) {}

	int dfs(int idx, int k, int par) {
		used[idx] = true;
		ord[idx] = k++;
		low[idx] = ord[idx];
		bool is_articulation = false;
		int cnt = 0;
		for (auto& to : g[idx]) {
			if (!used[to]) {
				++cnt;
				k = dfs(to, k, idx);
				low[idx] = min(low[idx], low[to]);
				is_articulation |= ~par && low[to] >= ord[idx];
				if (ord[idx] < low[to]) bridge.emplace_back(minmax(idx, (int)to));
			}
			else if (to != par) {
				low[idx] = min(low[idx], ord[to]);
			}
		}
		is_articulation |= par == -1 && cnt > 1;
		if (is_articulation) articulation.push_back(idx);
		return k;
	}

	virtual void build() {
		used.assign(g.size(), 0);
		ord.assign(g.size(), 0);
		low.assign(g.size(), 0);
		int k = 0;
		for (int i = 0; i < g.size(); i++) {
			if (!used[i]) k = dfs(i, k, -1);
		}
	}
};

int LIS_op(int fi,int se) {
	return max(fi,se);
}
int LIS_e() {
	return 0;
}
struct LIS {
	int N=0, ans=0;
	vpint a;
	vint v;

	LIS(int n,vint x) {
		N = n;
		a.resize(N);
		v.resize(N);
		rep(i, N)a[i] = { x[i],i };
		sort(ALL(a));
	}

	int solve() {
		segtree<int, LIS_op, LIS_e> seg(v);
		rep(i, N) {
			int m = seg.prod(0, a[i].second) + 1;
			seg.set(a[i].second, m);
			chmax(ans, m);
		}
		return ans;
	}
};

class LCA {
private:
	int root;
	int k; // n<=2^kとなる最小のk
	vector<vector<int>> dp; // dp[i][j]:=要素jの2^i上の要素
	vector<int> depth;  // depth[i]:=rootに対する頂点iの深さ
public:
	LCA(const vector<vector<int>>& _G, const int _root = 0) {
		int n = _G.size();
		root = _root;
		k = 1;
		int nibeki = 2;
		while (nibeki < n) {
			nibeki <<= 1;
			k++;
		}
		// 頂点iの親ノードを初期化
		dp = vector<vector<int>>(k + 1, vector<int>(n, -1));
		depth.resize(n);
		function<void(int, int)> _dfs = [&](int v, int p) {
			dp[0][v] = p;
			for (auto nv : _G[v]) {
				if (nv == p) continue;
				depth[nv] = depth[v] + 1;
				_dfs(nv, v);
			}
		};
		_dfs(root, -1);
		// ダブリング
		for (int i = 0; i < k; i++) {
			for (int j = 0; j < n; j++) {
				if (dp[i][j] == -1) continue;
				dp[i + 1][j] = dp[i][dp[i][j]];
			}
		}
	}
	/// get LCA
	int get(int u, int v) {
		if (depth[u] < depth[v]) swap(u, v); // u側を深くする
		if (depth[u] != depth[v]) {
			long long d = depth[u] - depth[v];
			for (int i = 0; i < k; i++) if ((d >> i) & 1) u = dp[i][u];
		}
		if (u == v) return u;
		for (int i = k; i >= 0; i--) {
			if (dp[i][u] != dp[i][v]) {
				u = dp[i][u], v = dp[i][v];
			}
		}
		return dp[0][u];
	}
	int get_distance(const int u, const int v) {
		int lca = get(u, v);
		return depth[u] + depth[v] - 2 * depth[lca];
	}
};


mint res = 0;
template<typename T> class BIT {
private:
	int n;
	vector<T> bit;
public:
	// 0_indexed で i 番目の要素に x を加える
	void add(int i, T x) {
		i++;
		while (i < n) {
			bit[i] += x, i += i & -i;
		}
	}
	// 0_indexed で [0,i] の要素の和(両閉区間!!)
	T sum(int i) {
		i++;
		T s = 0;
		while (i > 0) {
			s += bit[i], i -= i & -i;
		}
		return s;
	}
	BIT() {}
	//初期値がすべて0の場合
	BIT(int sz) : n(sz + 1), bit(n, 0) {}
	BIT(const vector<T>& v) : n((int)v.size() + 1), bit(n, 0) {
		for (int i = 0; i < n - 1; i++) {
			add(i, v[i]);
		}
	}
	void print() {
		for (int i = 0; i < n - 1; i++) {
			cout << sum(i) - sum(i - 1) << " ";
		}
		cout << "\n";
	}
	//-1スタート
	void print_sum() {
		for (int i = 0; i < n; i++) {
			cout << sum(i - 1) << " ";
		}
		cout << "\n";
	}
};
// u を昇順にソートするのに必要な交換回数(転倒数) (u は {0,..., n-1} からなる重複を許した長さ n の数列)
long long inv_count(const vector<int>& u)
{
	int n = (int)u.size();
	BIT<int> bt(n);
	long long ans = 0;
	for (int i = 0; i < n; i++) {
		ans += i - bt.sum(u[i]);
		int x = i - bt.sum(u[i]);
		res += mpow(2, n-1  -(x+u[i]), MOD) - 1;
		cout << x<<" "<<u[i] << endl;
		bt.add(u[i], 1);
	}
	return ans;
}


void solve() {
	int N = in();
	vint a(N);
	rep(i, N)cin >> a[i];
	cout << median(a) << endl;
}

signed main() {
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	cout << fixed << setprecision(15);
	solve();
}

//bit全探索
/*
rep(i,1LL<<N){
	rep(j,N){
		if (bit(i,j)){
		}
	}
}
*/

//素因数分解
/*
const auto& res = prime_factorize(N);
for (auto p : res) {
}
*/
0