結果
問題 | No.1611 Minimum Multiple with Double Divisors |
ユーザー | koba-e964 |
提出日時 | 2021-12-02 14:37:48 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 877 ms / 2,000 ms |
コード長 | 6,536 bytes |
コンパイル時間 | 16,234 ms |
コンパイル使用メモリ | 379,328 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-05 01:55:17 |
合計ジャッジ時間 | 22,152 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 877 ms
5,248 KB |
testcase_01 | AC | 163 ms
5,376 KB |
testcase_02 | AC | 163 ms
5,376 KB |
testcase_03 | AC | 165 ms
5,376 KB |
testcase_04 | AC | 164 ms
5,376 KB |
testcase_05 | AC | 167 ms
5,376 KB |
testcase_06 | AC | 168 ms
5,376 KB |
testcase_07 | AC | 167 ms
5,376 KB |
testcase_08 | AC | 166 ms
5,376 KB |
testcase_09 | AC | 166 ms
5,376 KB |
testcase_10 | AC | 29 ms
5,376 KB |
testcase_11 | AC | 39 ms
5,376 KB |
testcase_12 | AC | 40 ms
5,376 KB |
testcase_13 | AC | 40 ms
5,376 KB |
testcase_14 | AC | 38 ms
5,376 KB |
testcase_15 | AC | 41 ms
5,376 KB |
testcase_16 | AC | 40 ms
5,376 KB |
testcase_17 | AC | 39 ms
5,376 KB |
testcase_18 | AC | 40 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | AC | 1 ms
5,376 KB |
testcase_21 | AC | 1 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
testcase_23 | AC | 1 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 1 ms
5,376 KB |
testcase_26 | AC | 1 ms
5,376 KB |
testcase_27 | AC | 1 ms
5,376 KB |
testcase_28 | AC | 1 ms
5,376 KB |
testcase_29 | AC | 1 ms
5,376 KB |
testcase_30 | AC | 0 ms
5,376 KB |
testcase_31 | AC | 1 ms
5,376 KB |
testcase_32 | AC | 1 ms
5,376 KB |
testcase_33 | AC | 1 ms
5,376 KB |
testcase_34 | AC | 1 ms
5,376 KB |
testcase_35 | AC | 1 ms
5,376 KB |
testcase_36 | AC | 1 ms
5,376 KB |
testcase_37 | AC | 1 ms
5,376 KB |
testcase_38 | AC | 1 ms
5,376 KB |
コンパイルメッセージ
warning: unused import: `std::cmp::*` --> src/main.rs:1:5 | 1 | use std::cmp::*; | ^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default
ソースコード
use std::cmp::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } // https://judge.yosupo.jp/submission/5155 mod pollard_rho { /// binary gcd pub fn gcd(mut x: i64, mut y: i64) -> i64 { if y == 0 { return x; } if x == 0 { return y; } let k = (x | y).trailing_zeros(); y >>= k; x >>= x.trailing_zeros(); while y != 0 { y >>= y.trailing_zeros(); if x > y { let t = x; x = y; y = t; } y -= x; } x << k } fn add_mod(x: i64, y: i64, n: i64) -> i64 { let z = x + y; if z >= n { z - n } else { z } } fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 { assert!(x >= 0); assert!(x < n); let mut sum = 0; let mut cur = x; while y > 0 { if (y & 1) == 1 { sum = add_mod(sum, cur, n); } cur = add_mod(cur, cur, n); y >>= 1; } sum } fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 { let mut prod = if n == 1 { 0 } else { 1 }; let mut cur = x % n; while e > 0 { if (e & 1) == 1 { prod = mul_mod(prod, cur, n); } e >>= 1; if e > 0 { cur = mul_mod(cur, cur, n); } } prod } pub fn is_prime(n: i64) -> bool { if n <= 1 { return false; } let small = [2, 3, 5, 7, 11, 13]; if small.iter().any(|&u| u == n) { return true; } if small.iter().any(|&u| n % u == 0) { return false; } let mut d = n - 1; let e = d.trailing_zeros(); d >>= e; // https://miller-rabin.appspot.com/ let a = [2, 325, 9375, 28178, 450775, 9780504, 1795265022]; a.iter().all(|&a| { if a % n == 0 { return true; } let mut x = mod_pow(a, d, n); if x == 1 { return true; } for _ in 0..e { if x == n - 1 { return true; } x = mul_mod(x, x, n); if x == 1 { return false; } } x == 1 }) } fn pollard_rho(n: i64, c: &mut i64) -> i64 { // An improvement with Brent's cycle detection algorithm is performed. // https://maths-people.anu.edu.au/~brent/pub/pub051.html if n % 2 == 0 { return 2; } loop { let mut x: i64; // tortoise let mut y = 2; // hare let mut d = 1; let cc = *c; let f = |i| add_mod(mul_mod(i, i, n), cc, n); let mut r = 1; // We don't perform the gcd-once-in-a-while optimization // because the plain gcd-every-time algorithm appears to // outperform, at least on judge.yosupo.jp :) while d == 1 { x = y; for _ in 0..r { y = f(y); d = gcd((x - y).abs(), n); if d != 1 { break; } } r *= 2; } if d == n { *c += 1; continue; } return d; } } /// Outputs (p, e) in p's ascending order. pub fn factorize(x: i64) -> Vec<(i64, usize)> { if x <= 1 { return vec![]; } let mut hm = std::collections::HashMap::new(); let mut pool = vec![x]; let mut c = 1; while let Some(u) = pool.pop() { if is_prime(u) { *hm.entry(u).or_insert(0) += 1; continue; } let p = pollard_rho(u, &mut c); pool.push(p); pool.push(u / p); } let mut v: Vec<_> = hm.into_iter().collect(); v.sort(); v } } // mod pollard_rho fn gcd(mut x: i64, mut y: i64) -> i64 { while y != 0 { let r = x % y; x = y; y = r; } x } // Returns a table pr that satisfies pr[i] <=> i is prime (0 <= i < n). // Complexity: O(n log log n) fn is_primes_tbl(n: usize) -> Vec<bool> { if n <= 2 { return vec![false; n]; } let mut pr = vec![true; n]; pr[0] = false; pr[1] = false; for i in 2..n { if !pr[i] { continue; } for j in 2..(n - 1) / i { pr[i * j] = false; } } pr } // https://yukicoder.me/problems/no/1611 (2.5) fn main() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););} input! { t: usize, x: [i64; t], } const W: usize = 1000; let pr = is_primes_tbl(W); for x in x { let mut mi = 0; for i in 2..W { if !pr[i] { continue; } if x % i as i64 == 0 { continue; } mi = i as i64; break; } for i in 2..mi { let mut orig = 1; let mut added = 1; let g = gcd(i, x); let pe = pollard_rho::factorize(g); let mut y = x; let mut j = i; for &(p, _) in &pe { let mut fx = 0; let mut fi = 0; while y % p == 0 { fx += 1; y /= p; } while j % p == 0 { fi += 1; j /= p; } orig *= fx + 1; added *= fx + fi + 1; } if j == 1 && added == 2 * orig { mi = i; break; } } puts!("{}\n", x * mi); } }