結果
問題 | No.1773 Love Triangle |
ユーザー | Sumitacchan |
提出日時 | 2021-12-04 05:40:50 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 15,234 bytes |
コンパイル時間 | 2,746 ms |
コンパイル使用メモリ | 226,556 KB |
実行使用メモリ | 26,076 KB |
最終ジャッジ日時 | 2024-07-06 10:27:00 |
合計ジャッジ時間 | 34,040 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,624 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | WA | - |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 3 ms
5,376 KB |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | WA | - |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | WA | - |
testcase_18 | AC | 420 ms
7,480 KB |
testcase_19 | WA | - |
testcase_20 | AC | 19 ms
5,376 KB |
testcase_21 | AC | 1 ms
5,376 KB |
testcase_22 | AC | 18 ms
5,376 KB |
testcase_23 | AC | 20 ms
5,376 KB |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | AC | 83 ms
5,376 KB |
testcase_27 | WA | - |
testcase_28 | AC | 3 ms
5,376 KB |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | AC | 1,443 ms
13,968 KB |
testcase_33 | AC | 938 ms
12,060 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | WA | - |
testcase_36 | AC | 55 ms
5,376 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 565 ms
8,004 KB |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | WA | - |
testcase_46 | WA | - |
testcase_47 | WA | - |
testcase_48 | AC | 588 ms
8,244 KB |
testcase_49 | WA | - |
testcase_50 | WA | - |
testcase_51 | AC | 579 ms
8,228 KB |
testcase_52 | AC | 560 ms
8,112 KB |
testcase_53 | AC | 566 ms
8,012 KB |
testcase_54 | WA | - |
testcase_55 | WA | - |
testcase_56 | AC | 565 ms
8,108 KB |
testcase_57 | AC | 573 ms
8,204 KB |
testcase_58 | WA | - |
testcase_59 | AC | 596 ms
8,360 KB |
testcase_60 | WA | - |
testcase_61 | AC | 603 ms
8,384 KB |
testcase_62 | WA | - |
testcase_63 | WA | - |
testcase_64 | AC | 590 ms
8,128 KB |
testcase_65 | AC | 600 ms
8,268 KB |
testcase_66 | AC | 591 ms
8,344 KB |
testcase_67 | WA | - |
testcase_68 | AC | 592 ms
8,360 KB |
testcase_69 | AC | 590 ms
8,220 KB |
testcase_70 | WA | - |
testcase_71 | AC | 594 ms
8,236 KB |
testcase_72 | WA | - |
testcase_73 | AC | 595 ms
8,292 KB |
testcase_74 | AC | 603 ms
8,380 KB |
testcase_75 | WA | - |
testcase_76 | AC | 616 ms
8,276 KB |
testcase_77 | WA | - |
testcase_78 | AC | 1 ms
5,376 KB |
testcase_79 | TLE | - |
testcase_80 | -- | - |
testcase_81 | -- | - |
testcase_82 | -- | - |
testcase_83 | -- | - |
testcase_84 | -- | - |
testcase_85 | -- | - |
testcase_86 | -- | - |
testcase_87 | -- | - |
testcase_88 | -- | - |
testcase_89 | -- | - |
testcase_90 | -- | - |
testcase_91 | -- | - |
testcase_92 | -- | - |
ソースコード
#include <bits/stdc++.h> //cplib-cpp //https://hitonanode.github.io/cplib-cpp/graph/test/general_matching.test.cpp template <typename T> struct matrix { int H, W; std::vector<T> elem; typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; } inline T &at(int i, int j) { return elem[i * W + j]; } inline T get(int i, int j) const { return elem[i * W + j]; } operator std::vector<std::vector<T>>() const { std::vector<std::vector<T>> ret(H); for (int i = 0; i < H; i++) std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i])); return ret; } matrix() = default; matrix(int H, int W) : H(H), W(W), elem(H * W) {} matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) { for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem)); } static matrix Identity(int N) { matrix ret(N, N); for (int i = 0; i < N; i++) ret.at(i, i) = 1; return ret; } matrix operator-() const { matrix ret(H, W); for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i]; return ret; } matrix operator*(const T &v) const { matrix ret = *this; for (auto &x : ret.elem) x *= v; return ret; } matrix operator/(const T &v) const { matrix ret = *this; for (auto &x : ret.elem) x /= v; return ret; } matrix operator+(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i]; return ret; } matrix operator-(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i]; return ret; } matrix operator*(const matrix &r) const { matrix ret(H, r.W); for (int i = 0; i < H; i++) { for (int k = 0; k < W; k++) { for (int j = 0; j < r.W; j++) { ret.at(i, j) += this->get(i, k) * r.get(k, j); } } } return ret; } matrix &operator*=(const T &v) { return *this = *this * v; } matrix &operator/=(const T &v) { return *this = *this / v; } matrix &operator+=(const matrix &r) { return *this = *this + r; } matrix &operator-=(const matrix &r) { return *this = *this - r; } matrix &operator*=(const matrix &r) { return *this = *this * r; } bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; } bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; } bool operator<(const matrix &r) const { return elem < r.elem; } matrix pow(int64_t n) const { matrix ret = Identity(H); if (n == 0) return ret; for (int i = 63 - __builtin_clzll(n); i >= 0; i--) { ret *= ret; if ((n >> i) & 1) ret *= (*this); } return ret; } matrix transpose() const { matrix ret(W, H); for (int i = 0; i < H; i++) for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j); return ret; } // Gauss-Jordan elimination // - Require inverse for every non-zero element // - Complexity: O(H^2 W) matrix gauss_jordan() const { int c = 0; matrix mtr(*this); for (int h = 0; h < H; h++) { if (c == W) break; int piv = -1; for (int j = h; j < H; j++) if (mtr.get(j, c)) { piv = j; break; } if (piv == -1) { c++; h--; continue; } if (h != piv) { for (int w = 0; w < W; w++) { std::swap(mtr[piv][w], mtr[h][w]); mtr.at(piv, w) *= -1; // To preserve sign of determinant } } for (int hh = 0; hh < H; hh++) if (hh != h) { T coeff = mtr.at(hh, c) * mtr.at(h, c).inv(); for (int w = W - 1; w >= c; w--) { mtr.at(hh, w) -= mtr.at(h, w) * coeff; } } c++; } return mtr; } int rank_of_gauss_jordan() const { for (int i = H * W - 1; i >= 0; i--) if (elem[i]) return i / W + 1; return 0; } T determinant_of_upper_triangle() const { T ret = 1; for (int i = 0; i < H; i++) ret *= get(i, i); return ret; } int inverse() { assert(H == W); std::vector<std::vector<T>> tmp = Identity(H), A = *this; std::vector<int> col(H); std::iota(col.begin(), col.end(), 0); for (int i = 0; i < H; i++) { int r = -1, c = -1; [&]() { for (int j = i; j < H; j++) { for (int k = i; k < H; k++) { if (A[j][k]) { r = j, c = k; return; } } } }(); if (r < 0) { return i; } A[i].swap(A[r]), tmp[i].swap(tmp[r]); for (int j = 0; j < H; j++) { std::swap(A[j][i], A[j][c]), std::swap(tmp[j][i], tmp[j][c]); } std::swap(col[i], col[c]); T v = A[i][i].inv(); for (int j = i + 1; j < H; j++) { T f = A[j][i] * v; A[j][i] = 0; for (int k = i + 1; k < H; k++) { A[j][k] -= f * A[i][k]; } for (int k = 0; k < H; k++) { tmp[j][k] -= f * tmp[i][k]; } } for (int j = i + 1; j < H; j++) { A[i][j] *= v; } for (int j = 0; j < H; j++) { tmp[i][j] *= v; } A[i][i] = 1; } for (int i = H - 1; i > 0; --i) { for (int j = 0; j < i; j++) { T v = A[j][i]; for (int k = 0; k < H; k++) { tmp[j][k] -= v * tmp[i][k]; } } } for (int i = 0; i < H; i++) { for (int j = 0; j < H; j++) { (*this)[col[i]][col[j]] = tmp[i][j]; } } return H; } friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) { assert(m.W == int(v.size())); std::vector<T> ret(m.H); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) { ret[i] += m.get(i, j) * v[j]; } } return ret; } friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) { assert(int(v.size()) == m.H); std::vector<T> ret(m.W); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) { ret[j] += v[i] * m.get(i, j); } } return ret; } friend std::ostream &operator<<(std::ostream &os, const matrix &x) { os << "[(" << x.H << " * " << x.W << " matrix)"; os << "\n[column sums: "; for (int j = 0; j < x.W; j++) { T s = 0; for (int i = 0; i < x.H; i++) s += x.get(i, j); os << s << ","; } os << "]"; for (int i = 0; i < x.H; i++) { os << "\n["; for (int j = 0; j < x.W; j++) os << x.get(i, j) << ","; os << "]"; } os << "]\n"; return os; } friend std::istream &operator>>(std::istream &is, matrix &x) { for (auto &v : x.elem) is >> v; return is; } }; template <typename MODINT> std::vector<std::pair<int, int>> generalMatching(int N, const std::vector<std::pair<int, int>>& ed) { std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count()); std::uniform_int_distribution<int> d(MODINT::get_mod()); std::vector<std::vector<MODINT>> mat(N, std::vector<MODINT>(N)); for (auto p : ed) { int a = p.first, b = p.second; if (a == b) continue; mat[a][b] = d(mt), mat[b][a] = -mat[a][b]; } matrix<MODINT> A = mat; const int rank = A.inverse(), M = 2 * N - rank; if (M != N) { do { mat.resize(M, std::vector<MODINT>(M)); for (int i = 0; i < N; i++) { mat[i].resize(M); for (int j = N; j < M; j++) { mat[i][j] = d(mt), mat[j][i] = -mat[i][j]; } } A = mat; } while (A.inverse() != M); } std::vector<int> has(M, 1); std::vector<std::pair<int, int>> ret; int fi = -1, fj = -1; for (int it = 0; it < M / 2; it++) { [&]() { for (int i = 0; i < M; i++) { if (has[i]) { for (int j = i + 1; j < M; j++) { if (A[i][j] and mat[i][j]) { fi = i, fj = j; return; } } } } }(); if (fj < N) { ret.emplace_back(fi, fj); } has[fi] = has[fj] = 0; for (int sw = 0; sw < 2; sw++) { MODINT a = A[fi][fj].inv(); for (int i = 0; i < M; i++) { if (has[i] and A[i][fj]) { MODINT b = A[i][fj] * a; for (int j = 0; j < M; j++) { A[i][j] -= A[fi][j] * b; } } } std::swap(fi, fj); } } return ret; } template <int mod> struct ModInt { using lint = long long; static int get_mod() { return mod; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&](){ std::set<int> fac; int v = mod - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < mod; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).power((mod - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val; constexpr ModInt() : val(0) {} constexpr ModInt &_setval(lint v) { val = (v >= mod ? v - mod : v); return *this; } constexpr ModInt(lint v) { _setval(v % mod + mod); } explicit operator bool() const { return val != 0; } constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); } constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); } constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); } constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); } constexpr ModInt operator-() const { return ModInt()._setval(mod - val); } constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; } constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; } constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; } constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); } friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); } friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); } friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); } constexpr bool operator==(const ModInt &x) const { return val == x.val; } constexpr bool operator!=(const ModInt &x) const { return val != x.val; } bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; } friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { os << x.val; return os; } constexpr lint power(lint n) const { lint ans = 1, tmp = this->val; while (n) { if (n & 1) ans = ans * tmp % mod; tmp = tmp * tmp % mod; n /= 2; } return ans; } constexpr lint inv() const { return this->power(mod - 2); } constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); } constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; } inline ModInt fac() const { static std::vector<ModInt> facs; int l0 = facs.size(); if (l0 > this->val) return facs[this->val]; facs.resize(this->val + 1); for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? ModInt(1) : facs[i - 1] * ModInt(i)); return facs[this->val]; } ModInt doublefac() const { lint k = (this->val + 1) / 2; if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac(); else return ModInt(k).fac() * ModInt(2).power(k); } ModInt nCr(const ModInt &r) const { if (this->val < r.val) return ModInt(0); return this->fac() / ((*this - r).fac() * r.fac()); } ModInt sqrt() const { if (val == 0) return 0; if (mod == 2) return val; if (power((mod - 1) / 2) != 1) return 0; ModInt b = 1; while (b.power((mod - 1) / 2) == 1) b += 1; int e = 0, m = mod - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = power((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.power(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.power(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val, mod - x.val)); } }; #define PROBLEM "https://judge.yosupo.jp/problem/general_matching" using namespace std; int main() { //それぞれの三角形につき、(u->v,u->w),(v->u,v->w),(w->u,w->v)の3択のいずれかを貼ると解釈 //できる有向グラフが根付き木にできることが必要十分条件? //(u->v,u->w)の代わりに(v<->w)に貼る、みたいなことを考えると、一般マッチングになっていることが必要条件 //ただしそれだけだと最初の有向グラフに戻したときになもりになることがある、情助 cin.tie(NULL), ios::sync_with_stdio(false); int N, M; cin >> N >> M; vector<pair<int, int>> edges; for(int i = 0; i < M; i++) { int u, v, w; cin >> u >> v >> w; u--; v--; w--; edges.emplace_back(u, v); edges.emplace_back(v, w); edges.emplace_back(w, u); } vector<pair<int, int>> ret = generalMatching<ModInt<1000000007>>(N, edges); cout << ret.size() << '\n'; }