結果

問題 No.1773 Love Triangle
ユーザー SumitacchanSumitacchan
提出日時 2021-12-04 05:40:50
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 15,234 bytes
コンパイル時間 2,746 ms
コンパイル使用メモリ 226,556 KB
実行使用メモリ 26,076 KB
最終ジャッジ日時 2024-07-06 10:27:00
合計ジャッジ時間 34,040 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,624 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 WA -
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 3 ms
5,376 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 WA -
testcase_10 AC 2 ms
5,376 KB
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 AC 3 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 WA -
testcase_18 AC 420 ms
7,480 KB
testcase_19 WA -
testcase_20 AC 19 ms
5,376 KB
testcase_21 AC 1 ms
5,376 KB
testcase_22 AC 18 ms
5,376 KB
testcase_23 AC 20 ms
5,376 KB
testcase_24 WA -
testcase_25 WA -
testcase_26 AC 83 ms
5,376 KB
testcase_27 WA -
testcase_28 AC 3 ms
5,376 KB
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 AC 1,443 ms
13,968 KB
testcase_33 AC 938 ms
12,060 KB
testcase_34 AC 2 ms
5,376 KB
testcase_35 WA -
testcase_36 AC 55 ms
5,376 KB
testcase_37 AC 2 ms
5,376 KB
testcase_38 AC 565 ms
8,004 KB
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 WA -
testcase_43 WA -
testcase_44 WA -
testcase_45 WA -
testcase_46 WA -
testcase_47 WA -
testcase_48 AC 588 ms
8,244 KB
testcase_49 WA -
testcase_50 WA -
testcase_51 AC 579 ms
8,228 KB
testcase_52 AC 560 ms
8,112 KB
testcase_53 AC 566 ms
8,012 KB
testcase_54 WA -
testcase_55 WA -
testcase_56 AC 565 ms
8,108 KB
testcase_57 AC 573 ms
8,204 KB
testcase_58 WA -
testcase_59 AC 596 ms
8,360 KB
testcase_60 WA -
testcase_61 AC 603 ms
8,384 KB
testcase_62 WA -
testcase_63 WA -
testcase_64 AC 590 ms
8,128 KB
testcase_65 AC 600 ms
8,268 KB
testcase_66 AC 591 ms
8,344 KB
testcase_67 WA -
testcase_68 AC 592 ms
8,360 KB
testcase_69 AC 590 ms
8,220 KB
testcase_70 WA -
testcase_71 AC 594 ms
8,236 KB
testcase_72 WA -
testcase_73 AC 595 ms
8,292 KB
testcase_74 AC 603 ms
8,380 KB
testcase_75 WA -
testcase_76 AC 616 ms
8,276 KB
testcase_77 WA -
testcase_78 AC 1 ms
5,376 KB
testcase_79 TLE -
testcase_80 -- -
testcase_81 -- -
testcase_82 -- -
testcase_83 -- -
testcase_84 -- -
testcase_85 -- -
testcase_86 -- -
testcase_87 -- -
testcase_88 -- -
testcase_89 -- -
testcase_90 -- -
testcase_91 -- -
testcase_92 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
//cplib-cpp
//https://hitonanode.github.io/cplib-cpp/graph/test/general_matching.test.cpp

template <typename T>
struct matrix
{
    int H, W;
    std::vector<T> elem;
    typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; }
    inline T &at(int i, int j) { return elem[i * W + j]; }
    inline T get(int i, int j) const { return elem[i * W + j]; }
    operator std::vector<std::vector<T>>() const {
        std::vector<std::vector<T>> ret(H);
        for (int i = 0; i < H; i++) std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i]));
        return ret;
    }

    matrix() = default;
    matrix(int H, int W) : H(H), W(W), elem(H * W) {}
    matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) {
        for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem));
    }

    static matrix Identity(int N) {
        matrix ret(N, N);
        for (int i = 0; i < N; i++) ret.at(i, i) = 1;
        return ret;
    }

    matrix operator-() const { matrix ret(H, W); for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i]; return ret; }
    matrix operator*(const T &v) const { matrix ret = *this; for (auto &x : ret.elem) x *= v; return ret; }
    matrix operator/(const T &v) const { matrix ret = *this; for (auto &x : ret.elem) x /= v; return ret; }
    matrix operator+(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i]; return ret; }
    matrix operator-(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i]; return ret; }
    matrix operator*(const matrix &r) const {
        matrix ret(H, r.W);
        for (int i = 0; i < H; i++) {
            for (int k = 0; k < W; k++) {
                for (int j = 0; j < r.W; j++) {
                    ret.at(i, j) += this->get(i, k) * r.get(k, j);
                }
            }
        }
        return ret;
    }
    matrix &operator*=(const T &v) { return *this = *this * v; }
    matrix &operator/=(const T &v) { return *this = *this / v; }
    matrix &operator+=(const matrix &r) { return *this = *this + r; }
    matrix &operator-=(const matrix &r) { return *this = *this - r; }
    matrix &operator*=(const matrix &r) { return *this = *this * r; }
    bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; }
    bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; }
    bool operator<(const matrix &r) const { return elem < r.elem; }
    matrix pow(int64_t n) const {
        matrix ret = Identity(H);
        if (n == 0) return ret;
        for (int i = 63 - __builtin_clzll(n); i >= 0; i--) {
            ret *= ret;
            if ((n >> i) & 1) ret *= (*this);
        }
        return ret;
    }
    matrix transpose() const {
        matrix ret(W, H);
        for (int i = 0; i < H; i++) for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j);
        return ret;
    }
    // Gauss-Jordan elimination
    // - Require inverse for every non-zero element
    // - Complexity: O(H^2 W)
    matrix gauss_jordan() const {
        int c = 0;
        matrix mtr(*this);
        for (int h = 0; h < H; h++) {
            if (c == W) break;
            int piv = -1;
            for (int j = h; j < H; j++) if (mtr.get(j, c)) {
                piv = j;
                break;
            }
            if (piv == -1) { c++; h--; continue; }
            if (h != piv) {
                for (int w = 0; w < W; w++) {
                    std::swap(mtr[piv][w], mtr[h][w]);
                    mtr.at(piv, w) *= -1; // To preserve sign of determinant
                }
            }
            for (int hh = 0; hh < H; hh++) if (hh != h) {
                T coeff = mtr.at(hh, c) * mtr.at(h, c).inv();
                for (int w = W - 1; w >= c; w--) {
                    mtr.at(hh, w) -= mtr.at(h, w) * coeff;
                }
            }
            c++;
        }
        return mtr;
    }
    int rank_of_gauss_jordan() const {
        for (int i = H * W - 1; i >= 0; i--) if (elem[i]) return i / W + 1;
        return 0;
    }
    T determinant_of_upper_triangle() const {
        T ret = 1;
        for (int i = 0; i < H; i++) ret *= get(i, i);
        return ret;
    }
    int inverse() {
        assert(H == W);
        std::vector<std::vector<T>> tmp = Identity(H), A = *this;
        std::vector<int> col(H);
        std::iota(col.begin(), col.end(), 0);
        for (int i = 0; i < H; i++) {
            int r = -1, c = -1;
            [&]() {
                for (int j = i; j < H; j++) {
                    for (int k = i; k < H; k++) {
                        if (A[j][k]) {
                            r = j, c = k;
                            return;
                        }
                    }
                }
            }();
            if (r < 0) {
                return i;
            }
            A[i].swap(A[r]), tmp[i].swap(tmp[r]);
            for (int j = 0; j < H; j++) {
                std::swap(A[j][i], A[j][c]), std::swap(tmp[j][i], tmp[j][c]);
            }
            std::swap(col[i], col[c]);
            T v = A[i][i].inv();
            for (int j = i + 1; j < H; j++) {
                T f = A[j][i] * v;
                A[j][i] = 0;
                for (int k = i + 1; k < H; k++) {
                    A[j][k] -= f * A[i][k];
                }
                for (int k = 0; k < H; k++) {
                    tmp[j][k] -= f * tmp[i][k];
                }
            }
            for (int j = i + 1; j < H; j++) {
                A[i][j] *= v;
            }
            for (int j = 0; j < H; j++) {
                tmp[i][j] *= v;
            }
            A[i][i] = 1;
        }
        for (int i = H - 1; i > 0; --i) {
            for (int j = 0; j < i; j++) {
                T v = A[j][i];
                for (int k = 0; k < H; k++) {
                    tmp[j][k] -= v * tmp[i][k];
                }
            }
        }
        for (int i = 0; i < H; i++) {
            for (int j = 0; j < H; j++) {
                (*this)[col[i]][col[j]] = tmp[i][j];
            }
        }
        return H;
    }
    friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) {
        assert(m.W == int(v.size()));
        std::vector<T> ret(m.H);
        for (int i = 0; i < m.H; i++) {
            for (int j = 0; j < m.W; j++) {
                ret[i] += m.get(i, j) * v[j];
            }
        }
        return ret;
    }
    friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) {
        assert(int(v.size()) == m.H);
        std::vector<T> ret(m.W);
        for (int i = 0; i < m.H; i++) {
            for (int j = 0; j < m.W; j++) {
                ret[j] += v[i] * m.get(i, j);
            }
        }
        return ret;
    }
    friend std::ostream &operator<<(std::ostream &os, const matrix &x) {
        os << "[(" << x.H << " * " << x.W << " matrix)";
        os << "\n[column sums: ";
        for (int j = 0; j < x.W; j++) {
            T s = 0;
            for (int i = 0; i < x.H; i++) s += x.get(i, j);
            os << s << ",";
        }
        os << "]";
        for (int i = 0; i < x.H; i++) {
            os << "\n[";
            for (int j = 0; j < x.W; j++) os << x.get(i, j) << ",";
            os << "]";
        }
        os << "]\n";
        return os;
    }
    friend std::istream &operator>>(std::istream &is, matrix &x) {
        for (auto &v : x.elem) is >> v;
        return is;
    }
};
template <typename MODINT>
std::vector<std::pair<int, int>> generalMatching(int N, const std::vector<std::pair<int, int>>& ed)
{
    std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count());
    std::uniform_int_distribution<int> d(MODINT::get_mod());

    std::vector<std::vector<MODINT>> mat(N, std::vector<MODINT>(N));
    for (auto p : ed) {
        int a = p.first, b = p.second;
        if (a == b) continue;
        mat[a][b] = d(mt), mat[b][a] = -mat[a][b];
    }
    matrix<MODINT> A = mat;
    const int rank = A.inverse(), M = 2 * N - rank;
    if (M != N) {
        do {
            mat.resize(M, std::vector<MODINT>(M));
            for (int i = 0; i < N; i++) {
                mat[i].resize(M);
                for (int j = N; j < M; j++) {
                    mat[i][j] = d(mt), mat[j][i] = -mat[i][j];
                }
            }
            A = mat;
        } while (A.inverse() != M);
    }

    std::vector<int> has(M, 1);
    std::vector<std::pair<int, int>> ret;
    int fi = -1, fj = -1;
    for (int it = 0; it < M / 2; it++) {
        [&]() {
            for (int i = 0; i < M; i++) {
                if (has[i]) {
                    for (int j = i + 1; j < M; j++) {
                        if (A[i][j] and mat[i][j]) {
                            fi = i, fj = j;
                            return;
                        }
                    }
                }
            }
        }();
        if (fj < N) {
            ret.emplace_back(fi, fj);
        }
        has[fi] = has[fj] = 0;
        for (int sw = 0; sw < 2; sw++) {
            MODINT a = A[fi][fj].inv();
            for (int i = 0; i < M; i++) {
                if (has[i] and A[i][fj]) {
                    MODINT b = A[i][fj] * a;
                    for (int j = 0; j < M; j++) {
                        A[i][j] -= A[fi][j] * b;
                    }
                }
            }
            std::swap(fi, fj);
        }
    }
    return ret;
}
template <int mod>
struct ModInt
{
    using lint = long long;
    static int get_mod() { return mod; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&](){
                std::set<int> fac;
                int v = mod - 1;
                for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < mod; g++) {
                    bool ok = true;
                    for (auto i : fac) if (ModInt(g).power((mod - 1) / i) == 1) { ok = false; break; }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val;
    constexpr ModInt() : val(0) {}
    constexpr ModInt &_setval(lint v) { val = (v >= mod ? v - mod : v); return *this; }
    constexpr ModInt(lint v) { _setval(v % mod + mod); }
    explicit operator bool() const { return val != 0; }
    constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }
    constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); }
    constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); }
    constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); }
    constexpr ModInt operator-() const { return ModInt()._setval(mod - val); }
    constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); }
    friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); }
    friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); }
    friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); }
    constexpr bool operator==(const ModInt &x) const { return val == x.val; }
    constexpr bool operator!=(const ModInt &x) const { return val != x.val; }
    bool operator<(const ModInt &x) const { return val < x.val; }  // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; }
    friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { os << x.val;  return os; }
    constexpr lint power(lint n) const {
        lint ans = 1, tmp = this->val;
        while (n) {
            if (n & 1) ans = ans * tmp % mod;
            tmp = tmp * tmp % mod;
            n /= 2;
        }
        return ans;
    }
    constexpr lint inv() const { return this->power(mod - 2); }
    constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); }
    constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; }

    inline ModInt fac() const {
        static std::vector<ModInt> facs;
        int l0 = facs.size();
        if (l0 > this->val) return facs[this->val];

        facs.resize(this->val + 1);
        for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? ModInt(1) : facs[i - 1] * ModInt(i));
        return facs[this->val];
    }

    ModInt doublefac() const {
        lint k = (this->val + 1) / 2;
        if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac();
        else return ModInt(k).fac() * ModInt(2).power(k);
    }

    ModInt nCr(const ModInt &r) const {
        if (this->val < r.val) return ModInt(0);
        return this->fac() / ((*this - r).fac() * r.fac());
    }

    ModInt sqrt() const {
        if (val == 0) return 0;
        if (mod == 2) return val;
        if (power((mod - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.power((mod - 1) / 2) == 1) b += 1;
        int e = 0, m = mod - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = power((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.power(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.power(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val, mod - x.val));
    }
};
#define PROBLEM "https://judge.yosupo.jp/problem/general_matching"

using namespace std;

int main()
{
    //それぞれの三角形につき、(u->v,u->w),(v->u,v->w),(w->u,w->v)の3択のいずれかを貼ると解釈
    //できる有向グラフが根付き木にできることが必要十分条件?
    //(u->v,u->w)の代わりに(v<->w)に貼る、みたいなことを考えると、一般マッチングになっていることが必要条件
    //ただしそれだけだと最初の有向グラフに戻したときになもりになることがある、情助

    cin.tie(NULL), ios::sync_with_stdio(false);

    int N, M;
    cin >> N >> M;
    vector<pair<int, int>> edges;
    for(int i = 0; i < M; i++) {
        int u, v, w;
        cin >> u >> v >> w;
        u--; v--; w--;
        edges.emplace_back(u, v);
        edges.emplace_back(v, w);
        edges.emplace_back(w, u);
    }
    vector<pair<int, int>> ret = generalMatching<ModInt<1000000007>>(N, edges);
    cout << ret.size() << '\n';
}
0