結果

問題 No.1718 Random Squirrel
ユーザー kaikeykaikey
提出日時 2021-12-18 21:10:37
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 7,147 bytes
コンパイル時間 3,036 ms
コンパイル使用メモリ 240,188 KB
実行使用メモリ 60,628 KB
最終ジャッジ日時 2024-09-15 13:59:22
合計ジャッジ時間 8,676 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 WA -
testcase_10 AC 2 ms
5,376 KB
testcase_11 WA -
testcase_12 AC 36 ms
9,020 KB
testcase_13 WA -
testcase_14 WA -
testcase_15 AC 235 ms
30,596 KB
testcase_16 WA -
testcase_17 WA -
testcase_18 AC 361 ms
40,704 KB
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 AC 475 ms
48,584 KB
testcase_23 WA -
testcase_24 WA -
testcase_25 AC 470 ms
48,712 KB
testcase_26 WA -
testcase_27 WA -
testcase_28 AC 33 ms
11,024 KB
testcase_29 AC 40 ms
12,288 KB
testcase_30 AC 263 ms
60,628 KB
testcase_31 AC 42 ms
14,336 KB
testcase_32 AC 40 ms
12,288 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
#include <random>
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef long double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
    for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
    return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
    for (T& in : v) is >> in;
    return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
template <class T>
T div_floor(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <class F> struct rec {
    F f;
    rec(F&& f_) : f(std::forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&... args) const {
        return f(*this, std::forward<Args>(args)...);
    }
};
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }
bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 2e18;
lint dx[8] = { -1, 0, 1, 0, 1, -1, 1, -1 }, dy[8] = { 0, 1, 0, -1, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endl; return flag; }
struct Edge {
    lint from, to, cost;
    Edge() {

    }
    Edge(lint u, lint v, lint c) {
        cost = c;
        from = u;
        to = v;
    }
    bool operator<(const Edge& e) const {
        return cost < e.cost;
    }
};
struct WeightedEdge {
    lint to;
    lint cost;
    WeightedEdge(lint v, lint c) {
        to = v;
        cost = c;
    }
    bool operator<(const WeightedEdge& e) const {
        return cost < e.cost;
    }
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<plint, lint> tlint;
typedef pair<ld, lint> _pld;
typedef pair<lint, tlint> qlint;
typedef pair<lint, string> valstr;
typedef pair<char, string> pchar;

template< typename Data, typename T >
struct ReRooting {

    struct Node {
        int to, rev;
        Data data;
    };

    using F1 = function< T(T, T) >;
    using F2 = function< T(T, Data) >;

    vector< vector< Node > > g;
    vector< vector< T > > ldp, rdp;
    vector< int > lptr, rptr;
    const F1 f1;
    const F2 f2;
    const T ident;

    ReRooting(int n, const F1& f1, const F2& f2, const T& ident) :
        g(n), ldp(n), rdp(n), lptr(n), rptr(n), f1(f1), f2(f2), ident(ident) {}

    void add_edge(int u, int v, const Data& d) {
        g[u].push_back({ v, (int)g[v].size(), d });
        g[v].push_back({ u, (int)g[u].size() - 1, d });
    }

    T dfs(int idx, int par) {

        while (lptr[idx] != par && lptr[idx] < g[idx].size()) {
            auto& e = g[idx][lptr[idx]];
            ldp[idx][lptr[idx] + 1] = f1(ldp[idx][lptr[idx]], f2(dfs(e.to, e.rev), e.data));
            ++lptr[idx];
        }
        while (rptr[idx] != par && rptr[idx] >= 0) {
            auto& e = g[idx][rptr[idx]];
            rdp[idx][rptr[idx]] = f1(rdp[idx][rptr[idx] + 1], f2(dfs(e.to, e.rev), e.data));
            --rptr[idx];
        }
        if (par < 0) return rdp[idx][0];
        return f1(ldp[idx][par], rdp[idx][par + 1]);
    }

    vector< T > solve() {
        for (int i = 0; i < g.size(); i++) {
            ldp[i].assign(g[i].size() + 1, 0);
            rdp[i].assign(g[i].size() + 1, 0);
            lptr[i] = 0;
            rptr[i] = (int)g[i].size() - 1;
        }
        vector< T > ret;
        for (int i = 0; i < g.size(); i++) {
            ret.push_back(dfs(i, -1));
        }
        return ret;
    }
};

int main() {
    lint N, K;
    cin >> N >> K;
    VVl to(N);
    REP(i, N - 1) {
        lint u, v;
        cin >> u >> v; u--; v--;
        to[u].push_back(v);
        to[v].push_back(u);
    }
    Vl arr(K);
    cin >> arr;
    Vl ined(N);
    REP(i, K) {
        arr[i]--;
        ined[arr[i]] = 1;
    }
    lint cnt = 0;
    V<plint> edges;
    map<lint, lint> fx;
    {
        auto dfs = [&](auto&& dfs, lint curr, lint prv) -> lint {
            lint res = ined[curr];
            for (lint nxt : to[curr]) {
                if (nxt == prv) continue;
                res |= dfs(dfs, nxt, curr);
            }
            if (res && prv != -1) {
                edges.push_back({ curr, prv });
                edges.push_back({ prv, curr });
            }
            return ined[curr] = res;
        };
        dfs(dfs, arr[0], -1);
        set<lint> st;
        REP(i, N) {
            if (ined[i]) {
                cnt++;
                st.insert(i);
            }
        }
        for (lint v : st) fx[v] = SZ(fx);
        REP(i, SZ(edges)) edges[i] = { fx[edges[i].first], fx[edges[i].second] };
    }
    ReRooting<lint, lint> dp(cnt, f_max<lint>, add<lint>, 0);
    set<plint> _st;
    for (plint v : edges) {
        if (_st.count({ v.second, v.first })) continue;
        dp.add_edge(v.first, v.second, 1);
        _st.insert(v);
    }
    auto res = dp.solve();

    Vl ans(N, INF);
    REP(i, K) {
        ans[arr[i]] = SZ(edges) - res[fx[arr[i]]];
        auto dfs = [&](auto&& dfs, lint curr, lint prv, lint depth) -> void {
            for (lint nxt : to[curr]) {
                if (nxt == prv) continue;
                dfs(dfs, nxt, curr, depth + 1);
            }
            ans[curr] = ans[arr[i]] + depth;
        };
        for (lint nxt : to[arr[i]]) {
            if (ined[nxt]) continue;
            dfs(dfs, nxt, arr[i], 1);
        }
    }
    REP(i, N) {
        if (ans[i] == INF) ans[i] = SZ(edges) - res[fx[i]];
    }
    REP(i, N) {
        cout << ans[i] << endk;
    }
}
0