結果
問題 | No.1322 Totient Bound |
ユーザー | hitonanode |
提出日時 | 2022-01-01 15:40:12 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 926 ms / 5,000 ms |
コード長 | 13,900 bytes |
コンパイル時間 | 2,242 ms |
コンパイル使用メモリ | 188,336 KB |
実行使用メモリ | 11,836 KB |
最終ジャッジ日時 | 2024-10-10 05:36:54 |
合計ジャッジ時間 | 17,788 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 2 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 4 ms
6,816 KB |
testcase_14 | AC | 4 ms
6,816 KB |
testcase_15 | AC | 2 ms
6,820 KB |
testcase_16 | AC | 3 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,820 KB |
testcase_18 | AC | 180 ms
6,820 KB |
testcase_19 | AC | 277 ms
6,828 KB |
testcase_20 | AC | 684 ms
10,468 KB |
testcase_21 | AC | 759 ms
10,748 KB |
testcase_22 | AC | 763 ms
10,888 KB |
testcase_23 | AC | 907 ms
11,704 KB |
testcase_24 | AC | 907 ms
11,736 KB |
testcase_25 | AC | 915 ms
11,700 KB |
testcase_26 | AC | 911 ms
11,704 KB |
testcase_27 | AC | 908 ms
11,704 KB |
testcase_28 | AC | 908 ms
11,832 KB |
testcase_29 | AC | 905 ms
11,708 KB |
testcase_30 | AC | 2 ms
6,820 KB |
testcase_31 | AC | 2 ms
6,816 KB |
testcase_32 | AC | 2 ms
6,820 KB |
testcase_33 | AC | 899 ms
11,832 KB |
testcase_34 | AC | 896 ms
11,828 KB |
testcase_35 | AC | 926 ms
11,708 KB |
testcase_36 | AC | 901 ms
11,708 KB |
testcase_37 | AC | 898 ms
11,836 KB |
testcase_38 | AC | 904 ms
11,704 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr) #else #define dbg(x) (x) #define dbgif(cond, x) 0 #endif struct CountPrimes { // Count Primes less than or equal to x (\pi(x)) for each x = N / i (i = 1, ..., N) in O(N^(2/3)) time // Learned this algorihtm from https://old.yosupo.jp/submission/14650 // Reference: https://min-25.hatenablog.com/entry/2018/11/11/172216 using Int = long long; Int n, n2, n3, n6; std::vector<int> is_prime; // [0, 0, 1, 1, 0, 1, 0, 1, ...] std::vector<Int> primes; // primes up to O(N^(1/2)), [2, 3, 5, 7, ...] int s; // size of vs std::vector<Int> vs; // [N, ..., n2, n2 - 1, n2 - 2, ..., 3, 2, 1] std::vector<Int> pi; // pi[i] = (# of primes s.t. <= vs[i]) is finally obtained std::vector<int> _fenwick; int getidx(Int a) const { return a <= n2 ? s - a : n / a - 1; } // vs[i] >= a を満たす最大の i を返す void _fenwick_rec_update(int i, Int cur, bool first) { // pi[n3:] に対して cur * (primes[i] 以上の素因数) の数の寄与を減じる if (!first) { for (int x = getidx(cur) - n3; x >= 0; x -= (x + 1) & (-x - 1)) _fenwick[x]--; } for (int j = i; cur * primes[j] <= vs[n3]; j++) _fenwick_rec_update(j, cur * primes[j], false); } CountPrimes(Int n_) : n(n_), n2((Int)sqrtl(n)), n3((Int)cbrtl(n)), n6((Int)sqrtl(n3)) { is_prime.assign(n2 + 300, 1), is_prime[0] = is_prime[1] = 0; // `+ 300`: https://en.wikipedia.org/wiki/Prime_gap for (size_t p = 2; p < is_prime.size(); p++) { if (is_prime[p]) { primes.push_back(p); for (size_t j = p * 2; j < is_prime.size(); j += p) is_prime[j] = 0; } } for (Int now = n; now; now = n / (n / now + 1)) vs.push_back(now); // [N, N / 2, ..., 1], Relevant integers (decreasing) length ~= 2sqrt(N) s = vs.size(); // pi[i] = (# of integers x s.t. x <= vs[i], (x is prime or all factors of x >= p)) // pre = (# of primes less than p) // 最小の素因数 p = 2, ..., について篩っていく pi.resize(s); for (int i = 0; i < s; i++) pi[i] = vs[i] - 1; int pre = 0; auto trans = [&](int i, Int p) { pi[i] -= pi[getidx(vs[i] / p)] - pre; }; size_t ip = 0; // [Sieve Part 1] For each prime p satisfying p <= N^(1/6) (Only O(N^(1/6) / log N) such primes exist), // O(sqrt(N)) simple operation is conducted. // - Complexity of this part: O(N^(2/3) / logN) for (; primes[ip] <= n6; ip++, pre++) { const auto &p = primes[ip]; for (int i = 0; p * p <= vs[i]; i++) trans(i, p); } // [Sieve Part 2] For each prime p satisfying N^(1/6) < p <= N^(1/3), // point-wise & Fenwick tree-based hybrid update is used // - first N^(1/3) elements are simply updated by quadratic algorithm. // - Updates of latter segments are managed by Fenwick tree. // - Complexity of this part: O(N^(2/3)) (O(N^(2/3)/log N) operations for Fenwick tree (O(logN) per query)) _fenwick.assign(s - n3, 0); // Fenwick tree, inversed order (summation for upper region) auto trans2 = [&](int i, Int p) { int j = getidx(vs[i] / p); auto z = pi[j]; if (j >= n3) { for (j -= n3; j < int(_fenwick.size()); j += (j + 1) & (-j - 1)) z += _fenwick[j]; } pi[i] -= z - pre; }; for (; primes[ip] <= n3; ip++, pre++) { const auto &p = primes[ip]; for (int i = 0; i < n3 and p * p <= vs[i]; i++) trans2(i, p); // upto n3, total trans2 times: O(N^(2/3) / logN) _fenwick_rec_update(ip, primes[ip], true); // total update times: O(N^(2/3) / logN) } for (int i = s - n3 - 1; i >= 0; i--) { int j = i + ((i + 1) & (-i - 1)); if (j < s - n3) _fenwick[i] += _fenwick[j]; } for (int i = 0; i < s - n3; i++) pi[i + n3] += _fenwick[i]; // [Sieve Part 3] For each prime p satisfying N^(1/3) < p <= N^(1/2), use only simple updates. // - Complexity of this part: O(N^(2/3) / logN) // \sum_i (# of factors of vs[i] of the form p^2, p >= N^(1/3)) = \sum_{i=1}^{N^(1/3)} \pi(\sqrt(vs[i]))) // = sqrt(N) \sum_i^{N^(1/3)} i^{-1/2} / logN = O(N^(2/3) / logN) // (Note: \sum_{i=1}^{N} i^{-1/2} = O(sqrt N) https://math.stackexchange.com/questions/2600796/finding-summation-of-inverse-of-square-roots ) for (; primes[ip] <= n2; ip++, pre++) { const auto &p = primes[ip]; for (int i = 0; p * p <= vs[i]; i++) trans(i, p); } } }; namespace SPRP { // http://miller-rabin.appspot.com/ const std::vector<std::vector<__int128>> bases{ {126401071349994536}, // < 291831 {336781006125, 9639812373923155}, // < 1050535501 (1e9) {2, 2570940, 211991001, 3749873356}, // < 47636622961201 (4e13) {2, 325, 9375, 28178, 450775, 9780504, 1795265022} // <= 2^64 }; inline int get_id(long long n) { if (n < 291831) { return 0; } else if (n < 1050535501) { return 1; } else if (n < 47636622961201) return 2; else { return 3; } } } // namespace SPRP // Miller-Rabin primality test // https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%A9%E3%83%BC%E2%80%93%E3%83%A9%E3%83%93%E3%83%B3%E7%B4%A0%E6%95%B0%E5%88%A4%E5%AE%9A%E6%B3%95 // Complexity: O(lg n) per query struct { long long modpow(__int128 x, __int128 n, long long mod) noexcept { __int128 ret = 1; for (x %= mod; n; x = x * x % mod, n >>= 1) ret = (n & 1) ? ret * x % mod : ret; return ret; } bool operator()(long long n) noexcept { if (n < 2) return false; if (n % 2 == 0) return n == 2; int s = __builtin_ctzll(n - 1); for (__int128 a : SPRP::bases[SPRP::get_id(n)]) { if (a % n == 0) continue; a = modpow(a, (n - 1) >> s, n); bool may_composite = true; if (a == 1) continue; for (int r = s; r--; a = a * a % n) { if (a == n - 1) may_composite = false; } if (may_composite) return false; } return true; } } is_prime; int main() { lint N; cin >> N; if (N == 1) { puts("2"); return 0; } CountPrimes p(N); lint npall = p.pi.front() + is_prime(N + 1); vector<int> p1p; for (auto x : p.vs) p1p.push_back(is_prime(x + 1)); vector<lint> dp(p.vs.size(), 1); // dp.back() = 1; int h = 0; lint npuse = 0; vector<int> nxt(p.vs.size(), -1); vector<int> done(dp.size()); done.back() = 1; dbgif(N <= 100, p.pi); dbgif(N <= 100, p.vs); dbgif(N <= 100, dp); int plo = 0; for (int j = p.primes.size() - 1; j >= 0; --j) { const lint pr = p.primes[j]; const lint pprv = p.primes[j + 1]; if (pr * (pr - 1) > N) continue; npuse++; chmax(plo, j + 1); dbgif(N <= 100, pr); // int i = dp.size() - 1; // while (i >= 0 and p.vs[i] * (pr - 1) * pr <= N) --i; // ++i; // if (j == 0) i = 0; // for (int i = int(dp.size()) - 1; i >= 0; --i) { for (int i = 0; i < int(dp.size()); ++i) { // if (j and p.vs[i] * (pr - 1) * pr > N) break; if (j and p.vs[i] < (pr - 1) * pr) break; if (chmax(done[i], 1)) { // chmax(np2, lint(plo)); dp[i] += max(p.pi[i] + p1p[i] - j - 1, 0LL); } dbgif(N <= 100, i); dbgif(N <= 100, done); dbgif(N <= 100, dp); lint q = p.vs[i] / (pr - 1); // lint add = dp[i]; lint sum = dp[i]; while (q) { int idx = p.getidx(q); if (done[idx]) { sum += dp[p.getidx(q)]; } else { sum += max(0LL, p.pi[idx] + p1p[idx] - j - 1) + 1; } // dp[p.getidx(q)] += add; q /= pr; } dp[i] = sum; dbgif(N <= 100, dp); } dbgif(N <= 100, dp); } dbg(plo); cout << dp.front() << endl; // dp.back() = 2; // dbgif(dp.size() <= 100, dp); // reverse(ALL(dp)); // cout << accumulate(ALL(dp), 0LL) << endl; // lint ret = 0; // REP(i, dp.size()) { // ret += dp[i] * (max(0LL, p.pi[i] + p1p[i] - npuse) + 1); // } // cout << ret << '\n'; }