結果

問題 No.649 ここでちょっとQK!
ユーザー ngtkanangtkana
提出日時 2022-01-02 23:22:18
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 261 ms / 3,000 ms
コード長 19,873 bytes
コンパイル時間 11,030 ms
コンパイル使用メモリ 404,292 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-12 04:04:14
合計ジャッジ時間 14,327 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 32
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused imports: `Leaf`, `Tuple`, `VecLen`
   --> src/main.rs:355:27
    |
355 |             multi_token::{Leaf, Parser, ParserTuple, RawTuple, Tuple, VecLen},
    |                           ^^^^                                 ^^^^^  ^^^^^^
    |
    = note: `#[warn(unused_imports)]` on by default

warning: unused import: `with_str`
   --> src/main.rs:593:35
    |
593 |     pub use self::i::{with_stdin, with_str};
    |                                   ^^^^^^^^

warning: unused imports: `ParserTuple`, `Parser`, `RawTuple`, `Token`, `Usize1`
   --> src/main.rs:595:28
    |
595 |         pub use super::i::{Parser, ParserTuple, RawTuple, Token, Usize1};
    |                            ^^^^^^  ^^^^^^^^^^^  ^^^^^^^^  ^^^^^  ^^^^^^

ソースコード

diff #
プレゼンテーションモードにする

#[allow(unused_imports)]
#[cfg(feature = "dbg")]
use dbg::lg;
use heap_tricks::DoubleHeap;
fn main() {
let mut buf = ngtio::with_stdin();
let q = buf.usize();
let k = buf.usize();
let mut heap = DoubleHeap::new();
for _ in 0..q {
match buf.u8() {
1 => {
heap.push_left(buf.i64());
}
2 => {
let ans = if heap.len() < k {
-1
} else {
heap.balance_left(k);
heap.pop_left().unwrap()
};
println!("{}", ans);
}
_ => unreachable!(),
}
}
}
// heap_tricks {{{
#[allow(dead_code)]
mod heap_tricks {
use std::{
cmp::Reverse,
collections::BinaryHeap,
fmt::Debug,
hash::Hash,
iter::FromIterator,
ops::{AddAssign, SubAssign},
};
pub trait Handler<T> {
fn push_left(&mut self, value: T);
fn pop_left(&mut self, value: T);
fn push_right(&mut self, value: T);
fn pop_right(&mut self, value: T);
}
#[derive(Clone, Debug, Default, Hash, PartialEq, Copy)]
pub struct Nop;
impl<T> Handler<T> for Nop {
fn push_left(&mut self, _value: T) {}
fn pop_left(&mut self, _value: T) {}
fn push_right(&mut self, _value: T) {}
fn pop_right(&mut self, _value: T) {}
}
#[derive(Clone, Debug, Default, Hash, PartialEq, Copy)]
pub struct Sum<T> {
pub left: T,
pub right: T,
}
impl<T> Handler<T> for Sum<T>
where
T: AddAssign<T> + SubAssign<T>,
{
fn push_left(&mut self, value: T) {
self.left += value;
}
fn pop_left(&mut self, value: T) {
self.left -= value;
}
fn push_right(&mut self, value: T) {
self.right += value;
}
fn pop_right(&mut self, value: T) {
self.right -= value;
}
}
#[derive(Clone)]
pub struct DoubleHeap<T, H> {
left: RemovableHeap<T>,
right: RemovableHeap<Reverse<T>>,
handler: H,
}
impl<T, H> Debug for DoubleHeap<T, H>
where
T: Copy + Ord + Hash + Debug,
H: Handler<T> + Debug,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("DoubleHeap")
.field(
"elm",
&[
self.collect_left_sorted_vec(),
self.collect_right_sorted_vec(),
],
)
.field("handler", &self.handler)
.finish()
}
}
impl<T> Default for DoubleHeap<T, Nop>
where
T: Copy + Ord + Hash,
{
fn default() -> Self {
Self {
left: RemovableHeap::default(),
right: RemovableHeap::default(),
handler: Nop,
}
}
}
impl<T> DoubleHeap<T, Nop>
where
T: Copy + Ord + Hash,
{
pub fn new() -> Self {
Self::default()
}
}
impl<T, H> DoubleHeap<T, H>
where
T: Copy + Ord + Hash,
H: Handler<T>,
{
pub fn with_handler(handler: H) -> Self {
Self {
left: RemovableHeap::default(),
right: RemovableHeap::default(),
handler,
}
}
pub fn is_empty(&self) -> bool {
self.left.is_empty() && self.right.is_empty()
}
pub fn len(&self) -> usize {
self.left.len() + self.right.len()
}
pub fn left_len(&self) -> usize {
self.left.len()
}
pub fn right_len(&self) -> usize {
self.right.len()
}
pub fn push_left(&mut self, elm: T) {
self.handler.push_left(elm);
self.left.push(elm);
self.settle();
}
pub fn push_right(&mut self, elm: T) {
self.handler.push_right(elm);
self.right.push(Reverse(elm));
self.settle();
}
pub fn peek_left(&self) -> Option<T> {
self.left.peek()
}
pub fn peek_right(&self) -> Option<T> {
self.right.peek().map(|rev| rev.0)
}
pub fn pop_left(&mut self) -> Option<T> {
let ans = self.left.pop();
self.settle();
ans
}
pub fn pop_right(&mut self) -> Option<T> {
let ans = self.right.pop().map(|rev| rev.0);
self.settle();
ans
}
pub fn move_left(&mut self) {
let elm = self.right.pop().expect("").0;
self.handler.pop_right(elm);
self.handler.push_left(elm);
self.left.push(elm);
self.settle();
}
pub fn move_right(&mut self) {
let elm = self.left.pop().expect("");
self.handler.pop_left(elm);
self.handler.push_right(elm);
self.right.push(Reverse(elm));
self.settle();
}
pub fn remove_left_unchecked(&mut self, elm: T) {
if self.left.peek().map_or(false, |lmax| elm <= lmax) {
self.handler.pop_left(elm);
self.left.remove_unchecked(elm);
self.settle();
} else {
self.handler.pop_right(elm);
self.right.remove_unchecked(Reverse(elm));
self.settle();
self.move_right();
}
}
pub fn remove_right_unchecked(&mut self, elm: T) {
if self.left.peek().map_or(false, |lmax| elm <= lmax) {
self.handler.pop_left(elm);
self.left.remove_unchecked(elm);
self.settle();
self.move_left();
} else {
self.handler.pop_right(elm);
self.right.remove_unchecked(Reverse(elm));
self.settle();
}
}
pub fn balance_left(&mut self, k: usize) {
assert!(k <= self.len());
while self.left_len() < k {
self.move_left()
}
while self.left_len() > k {
self.move_right()
}
}
pub fn balance_right(&mut self, k: usize) {
assert!(k <= self.len());
while self.right_len() < k {
self.move_right()
}
while self.right_len() > k {
self.move_left()
}
}
pub fn handler(&self) -> &H {
&self.handler
}
pub fn collect_left_sorted_vec(&self) -> Vec<T> {
self.left.collect_sorted_vec()
}
pub fn collect_right_sorted_vec(&self) -> Vec<T> {
self.right
.collect_sorted_vec()
.into_iter()
.rev()
.map(|rev| rev.0)
.collect()
}
pub fn collect_sorted_vec(&self) -> Vec<T> {
let mut left = self.left.collect_sorted_vec();
let right = self.right.collect_sorted_vec();
left.extend(right.into_iter().rev().map(|rev| rev.0));
left
}
fn settle(&mut self) {
while !self.left.is_empty()
&& !self.right.is_empty()
&& self.left.peek().unwrap() > self.right.peek().unwrap().0
{
let elm = self.right.pop().unwrap().0;
self.handler.pop_right(elm);
self.handler.push_left(elm);
self.left.push(elm);
let elm = self.left.pop().unwrap();
self.handler.pop_left(elm);
self.handler.push_right(elm);
self.right.push(Reverse(elm));
}
}
}
#[derive(Clone)]
pub struct RemovableHeap<T> {
heap: BinaryHeap<T>,
removed: BinaryHeap<T>,
len: usize,
}
impl<T: Copy + Ord + Hash + Debug> Debug for RemovableHeap<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_list().entries(self.collect_sorted_vec()).finish()
}
}
impl<T: Copy + Ord + Hash> FromIterator<T> for RemovableHeap<T> {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let heap = BinaryHeap::from_iter(iter);
Self {
len: heap.len(),
heap,
removed: BinaryHeap::default(),
}
}
}
impl<T: Copy + Ord + Hash> Default for RemovableHeap<T> {
fn default() -> Self {
Self {
heap: BinaryHeap::default(),
removed: BinaryHeap::default(),
len: 0,
}
}
}
impl<T: Copy + Ord + Hash> RemovableHeap<T> {
pub fn new() -> Self {
Self::default()
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn len(&self) -> usize {
self.len
}
pub fn push(&mut self, x: T) {
self.len += 1;
self.heap.push(x);
}
pub fn remove_unchecked(&mut self, x: T) {
self.len -= 1;
self.removed.push(x);
self.settle();
}
pub fn pop(&mut self) -> Option<T> {
let ans = self.heap.pop()?;
self.len -= 1;
self.settle();
Some(ans)
}
pub fn peek(&self) -> Option<T> {
self.heap.peek().copied()
}
pub fn collect_sorted_vec(&self) -> Vec<T> {
let mut heap = self.heap.clone();
let mut removed = self.removed.clone();
let mut ans = Vec::new();
while let Some(x) = heap.pop() {
if removed.peek() == Some(&x) {
removed.pop().unwrap();
} else {
ans.push(x);
}
}
ans.reverse();
ans
}
fn settle(&mut self) {
while !self.heap.is_empty() && self.heap.peek() <= self.removed.peek() {
self.heap.pop().unwrap();
self.removed.pop().unwrap();
}
}
}
}
// }}}
// template {{{
#[cfg(not(feature = "dbg"))]
#[allow(unused_macros)]
#[macro_export]
macro_rules! lg {
($($expr:expr),*) => {};
}
#[allow(dead_code)]
mod ngtio {
mod i {
pub use self::{
multi_token::{Leaf, Parser, ParserTuple, RawTuple, Tuple, VecLen},
token::{Token, Usize1},
};
use std::{
io::{self, BufRead},
iter,
};
pub fn with_stdin() -> Tokenizer<io::BufReader<io::Stdin>> {
io::BufReader::new(io::stdin()).tokenizer()
}
pub fn with_str(src: &str) -> Tokenizer<&[u8]> {
src.as_bytes().tokenizer()
}
pub struct Tokenizer<S: BufRead> {
queue: Vec<String>, // FIXME: String
scanner: S,
}
macro_rules! prim_method {
($name:ident: $T:ty) => {
pub fn $name(&mut self) -> $T {
<$T>::leaf().parse(self)
}
};
($name:ident) => {
prim_method!($name: $name);
};
}
macro_rules! prim_methods {
($name:ident: $T:ty; $($rest:tt)*) => {
prim_method!($name:$T);
prim_methods!($($rest)*);
};
($name:ident; $($rest:tt)*) => {
prim_method!($name);
prim_methods!($($rest)*);
};
() => ()
}
impl<S: BufRead> Tokenizer<S> {
pub fn token(&mut self) -> String {
self.load();
self.queue.pop().expect("")
}
pub fn new(scanner: S) -> Self {
Self {
queue: Vec::new(),
scanner,
}
}
fn load(&mut self) {
while self.queue.is_empty() {
let mut s = String::new();
let length = self.scanner.read_line(&mut s).unwrap(); // UTF-8
if length == 0 {
break;
}
self.queue = s.split_whitespace().rev().map(str::to_owned).collect();
}
}
pub fn skip_line(&mut self) {
assert!(
self.queue.is_empty(),
": {:?}",
&self.queue
);
self.load();
}
pub fn end(&mut self) {
self.load();
assert!(self.queue.is_empty(), "");
}
pub fn parse<T: Token>(&mut self) -> T::Output {
T::parse(&self.token())
}
pub fn parse_collect<T: Token, B>(&mut self, n: usize) -> B
where
B: iter::FromIterator<T::Output>,
{
iter::repeat_with(|| self.parse::<T>()).take(n).collect()
}
pub fn tuple<T: RawTuple>(&mut self) -> <T::LeafTuple as Parser>::Output {
T::leaf_tuple().parse(self)
}
pub fn vec<T: Token>(&mut self, len: usize) -> Vec<T::Output> {
T::leaf().vec(len).parse(self)
}
pub fn vec_tuple<T: RawTuple>(
&mut self,
len: usize,
) -> Vec<<T::LeafTuple as Parser>::Output> {
T::leaf_tuple().vec(len).parse(self)
}
pub fn vec2<T: Token>(&mut self, height: usize, width: usize) -> Vec<Vec<T::Output>> {
T::leaf().vec(width).vec(height).parse(self)
}
pub fn vec2_tuple<T>(
&mut self,
height: usize,
width: usize,
) -> Vec<Vec<<T::LeafTuple as Parser>::Output>>
where
T: RawTuple,
{
T::leaf_tuple().vec(width).vec(height).parse(self)
}
prim_methods! {
u8; u16; u32; u64; u128; usize;
i8; i16; i32; i64; i128; isize;
f32; f64;
char; string: String;
}
}
mod token {
use super::multi_token::Leaf;
use std::{any, fmt, marker, str};
pub trait Token: Sized {
type Output;
fn parse(s: &str) -> Self::Output;
fn leaf() -> Leaf<Self> {
Leaf(marker::PhantomData)
}
}
impl<T> Token for T
where
T: str::FromStr,
<Self as str::FromStr>::Err: fmt::Debug,
{
type Output = Self;
fn parse(s: &str) -> Self::Output {
s.parse().unwrap_or_else(|_| {
panic!("Parse error!: ({}: {})", s, any::type_name::<Self>(),)
})
}
}
pub struct Usize1 {}
impl Token for Usize1 {
type Output = usize;
fn parse(s: &str) -> Self::Output {
usize::parse(s)
.checked_sub(1)
.expect("Parse error! (Zero substruction error of Usize1)")
}
}
}
mod multi_token {
use super::{Token, Tokenizer};
use std::{io::BufRead, iter, marker};
pub trait Parser: Sized {
type Output;
fn parse<S: BufRead>(&self, server: &mut Tokenizer<S>) -> Self::Output;
fn vec(self, len: usize) -> VecLen<Self> {
VecLen { len, elem: self }
}
}
pub struct Leaf<T>(pub(super) marker::PhantomData<T>);
impl<T: Token> Parser for Leaf<T> {
type Output = T::Output;
fn parse<S: BufRead>(&self, server: &mut Tokenizer<S>) -> T::Output {
server.parse::<T>()
}
}
pub struct VecLen<T> {
pub len: usize,
pub elem: T,
}
impl<T: Parser> Parser for VecLen<T> {
type Output = Vec<T::Output>;
fn parse<S: BufRead>(&self, server: &mut Tokenizer<S>) -> Self::Output {
iter::repeat_with(|| self.elem.parse(server))
.take(self.len)
.collect()
}
}
pub trait RawTuple {
type LeafTuple: Parser;
fn leaf_tuple() -> Self::LeafTuple;
}
pub trait ParserTuple {
type Tuple: Parser;
fn tuple(self) -> Self::Tuple;
}
pub struct Tuple<T>(pub T);
macro_rules! impl_tuple {
($($t:ident: $T:ident),*) => {
impl<$($T),*> Parser for Tuple<($($T,)*)>
where
$($T: Parser,)*
{
type Output = ($($T::Output,)*);
#[allow(unused_variables)]
fn parse<S: BufRead >(&self, server: &mut Tokenizer<S>) -> Self::Output {
match self {
Tuple(($($t,)*)) => {
($($t.parse(server),)*)
}
}
}
}
impl<$($T: Token),*> RawTuple for ($($T,)*) {
type LeafTuple = Tuple<($(Leaf<$T>,)*)>;
fn leaf_tuple() -> Self::LeafTuple {
Tuple(($($T::leaf(),)*))
}
}
impl<$($T: Parser),*> ParserTuple for ($($T,)*) {
type Tuple = Tuple<($($T,)*)>;
fn tuple(self) -> Self::Tuple {
Tuple(self)
}
}
};
}
impl_tuple!();
impl_tuple!(t1: T1);
impl_tuple!(t1: T1, t2: T2);
impl_tuple!(t1: T1, t2: T2, t3: T3);
impl_tuple!(t1: T1, t2: T2, t3: T3, t4: T4);
impl_tuple!(t1: T1, t2: T2, t3: T3, t4: T4, t5: T5);
impl_tuple!(t1: T1, t2: T2, t3: T3, t4: T4, t5: T5, t6: T6);
impl_tuple!(t1: T1, t2: T2, t3: T3, t4: T4, t5: T5, t6: T6, t7: T7);
impl_tuple!(
t1: T1,
t2: T2,
t3: T3,
t4: T4,
t5: T5,
t6: T6,
t7: T7,
t8: T8
);
}
trait Scanner: BufRead + Sized {
fn tokenizer(self) -> Tokenizer<Self> {
Tokenizer::new(self)
}
}
impl<R: BufRead> Scanner for R {}
}
pub use self::i::{with_stdin, with_str};
mod prelude {
pub use super::i::{Parser, ParserTuple, RawTuple, Token, Usize1};
}
}
// }}}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0