結果
| 問題 |
No.1812 Uribo Road
|
| コンテスト | |
| ユーザー |
stoq
|
| 提出日時 | 2022-01-14 23:06:05 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 13,931 bytes |
| コンパイル時間 | 4,775 ms |
| コンパイル使用メモリ | 269,484 KB |
| 最終ジャッジ日時 | 2025-01-27 12:11:06 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 23 TLE * 6 MLE * 1 |
ソースコード
#define MOD_TYPE 1
#include <bits/stdc++.h>
using namespace std;
#include <atcoder/all>
//#include <atcoder/modint>
//#include <atcoder/lazysegtree>
//#include <atcoder/segtree>
using namespace atcoder;
#if 0
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 0
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/rope>
using namespace __gnu_pbds;
using namespace __gnu_cxx;
template <typename T>
using extset =
tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
#pragma region Macros
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
#if MOD_TYPE == 1
constexpr ll MOD = ll(1e9 + 7);
#else
#if MOD_TYPE == 2
constexpr ll MOD = 998244353;
#else
constexpr ll MOD = 1000003;
#endif
#endif
using mint = static_modint<MOD>;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-11;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
#define UNIQUE(v) v.erase(unique(all(v)), v.end())
struct io_init {
io_init() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; }
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val) {
fill((T *)array, (T *)(array + N), val);
}
template <typename T>
vector<T> compress(vector<T> &v) {
vector<T> val = v;
sort(all(val)), val.erase(unique(all(val)), val.end());
for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin();
return val;
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept {
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept {
os << p.first << " " << p.second;
return os;
}
ostream &operator<<(ostream &os, mint m) {
os << m.val();
return os;
}
ostream &operator<<(ostream &os, modint m) {
os << m.val();
return os;
}
template <typename T>
constexpr istream &operator>>(istream &is, vector<T> &v) noexcept {
for (int i = 0; i < v.size(); i++) is >> v[i];
return is;
}
template <typename T>
constexpr ostream &operator<<(ostream &os, vector<T> &v) noexcept {
for (int i = 0; i < v.size(); i++)
os << v[i] << (i + 1 == v.size() ? "" : " ");
return os;
}
random_device seed_gen;
mt19937_64 engine(seed_gen());
struct BiCoef {
vector<mint> fact_, inv_, finv_;
BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
for (int i = 2; i < n; i++) {
fact_[i] = fact_[i - 1] * i;
inv_[i] = -inv_[MOD % i] * (MOD / i);
finv_[i] = finv_[i - 1] * inv_[i];
}
}
mint C(ll n, ll k) const noexcept {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[k] * finv_[n - k];
}
mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; }
mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); }
mint Ch1(ll n, ll k) const noexcept {
if (n < 0 || k < 0) return 0;
mint res = 0;
for (int i = 0; i < n; i++)
res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1);
return res;
}
mint fact(ll n) const noexcept {
if (n < 0) return 0;
return fact_[n];
}
mint inv(ll n) const noexcept {
if (n < 0) return 0;
return inv_[n];
}
mint finv(ll n) const noexcept {
if (n < 0) return 0;
return finv_[n];
}
};
BiCoef bc(1000010);
#pragma endregion
// -------------------------------
namespace radix_heap {
namespace internal {
template <bool Is64bit>
class find_bucket_impl;
template <>
class find_bucket_impl<false> {
public:
static inline constexpr size_t find_bucket(uint32_t x, uint32_t last) {
return x == last ? 0 : 32 - __builtin_clz(x ^ last);
}
};
template <>
class find_bucket_impl<true> {
public:
static inline constexpr size_t find_bucket(uint64_t x, uint64_t last) {
return x == last ? 0 : 64 - __builtin_clzll(x ^ last);
}
};
template <typename T>
inline constexpr size_t find_bucket(T x, T last) {
return find_bucket_impl<sizeof(T) == 8>::find_bucket(x, last);
}
template <typename KeyType, bool IsSigned>
class encoder_impl_integer;
template <typename KeyType>
class encoder_impl_integer<KeyType, false> {
public:
typedef KeyType key_type;
typedef KeyType unsigned_key_type;
inline static constexpr unsigned_key_type encode(key_type x) { return x; }
inline static constexpr key_type decode(unsigned_key_type x) { return x; }
};
template <typename KeyType>
class encoder_impl_integer<KeyType, true> {
public:
typedef KeyType key_type;
typedef typename std::make_unsigned<KeyType>::type unsigned_key_type;
inline static constexpr unsigned_key_type encode(key_type x) {
return static_cast<unsigned_key_type>(x) ^
(unsigned_key_type(1) << unsigned_key_type(
std::numeric_limits<unsigned_key_type>::digits - 1));
}
inline static constexpr key_type decode(unsigned_key_type x) {
return static_cast<key_type>(
x ^ (unsigned_key_type(1)
<< (std::numeric_limits<unsigned_key_type>::digits - 1)));
}
};
template <typename KeyType, typename UnsignedKeyType>
class encoder_impl_decimal {
public:
typedef KeyType key_type;
typedef UnsignedKeyType unsigned_key_type;
inline static constexpr unsigned_key_type encode(key_type x) {
return raw_cast<key_type, unsigned_key_type>(x) ^
((-(raw_cast<key_type, unsigned_key_type>(x) >>
(std::numeric_limits<unsigned_key_type>::digits - 1))) |
(unsigned_key_type(1)
<< (std::numeric_limits<unsigned_key_type>::digits - 1)));
}
inline static constexpr key_type decode(unsigned_key_type x) {
return raw_cast<unsigned_key_type, key_type>(
x ^ (((x >> (std::numeric_limits<unsigned_key_type>::digits - 1)) - 1) |
(unsigned_key_type(1)
<< (std::numeric_limits<unsigned_key_type>::digits - 1))));
}
private:
template <typename T, typename U>
union raw_cast {
public:
constexpr raw_cast(T t) : t_(t) {}
operator U() const { return u_; }
private:
T t_;
U u_;
};
};
template <typename KeyType>
class encoder
: public encoder_impl_integer<KeyType, std::is_signed<KeyType>::value> {};
template <>
class encoder<float> : public encoder_impl_decimal<float, uint32_t> {};
template <>
class encoder<double> : public encoder_impl_decimal<double, uint64_t> {};
} // namespace internal
template <typename KeyType, typename EncoderType = internal::encoder<KeyType>>
class radix_heap {
public:
typedef KeyType key_type;
typedef EncoderType encoder_type;
typedef typename encoder_type::unsigned_key_type unsigned_key_type;
radix_heap() : size_(0), last_(), buckets_() {
buckets_min_.fill(std::numeric_limits<unsigned_key_type>::max());
}
void push(key_type key) {
const unsigned_key_type x = encoder_type::encode(key);
assert(last_ <= x);
++size_;
const size_t k = internal::find_bucket(x, last_);
buckets_[k].emplace_back(x);
buckets_min_[k] = std::min(buckets_min_[k], x);
}
key_type top() {
pull();
return encoder_type::decode(last_);
}
void pop() {
pull();
buckets_[0].pop_back();
--size_;
}
size_t size() const { return size_; }
bool empty() const { return size_ == 0; }
void clear() {
size_ = 0;
last_ = key_type();
for (auto &b : buckets_) b.clear();
buckets_min_.fill(std::numeric_limits<unsigned_key_type>::max());
}
void swap(radix_heap<KeyType, EncoderType> &a) {
std::swap(size_, a.size_);
std::swap(last_, a.last_);
buckets_.swap(a.buckets_);
buckets_min_.swap(a.buckets_min_);
}
private:
size_t size_;
unsigned_key_type last_;
std::array<std::vector<unsigned_key_type>,
std::numeric_limits<unsigned_key_type>::digits + 1>
buckets_;
std::array<unsigned_key_type,
std::numeric_limits<unsigned_key_type>::digits + 1>
buckets_min_;
void pull() {
assert(size_ > 0);
if (!buckets_[0].empty()) return;
size_t i;
for (i = 1; buckets_[i].empty(); ++i)
;
last_ = buckets_min_[i];
for (unsigned_key_type x : buckets_[i]) {
const size_t k = internal::find_bucket(x, last_);
buckets_[k].emplace_back(x);
buckets_min_[k] = std::min(buckets_min_[k], x);
}
buckets_[i].clear();
buckets_min_[i] = std::numeric_limits<unsigned_key_type>::max();
}
};
template <typename KeyType, typename ValueType,
typename EncoderType = internal::encoder<KeyType>>
class pair_radix_heap {
public:
typedef KeyType key_type;
typedef ValueType value_type;
typedef EncoderType encoder_type;
typedef typename encoder_type::unsigned_key_type unsigned_key_type;
pair_radix_heap() : size_(0), last_(), buckets_() {
buckets_min_.fill(std::numeric_limits<unsigned_key_type>::max());
}
void push(key_type key, const value_type &value) {
const unsigned_key_type x = encoder_type::encode(key);
assert(last_ <= x);
++size_;
const size_t k = internal::find_bucket(x, last_);
buckets_[k].emplace_back(x, value);
buckets_min_[k] = std::min(buckets_min_[k], x);
}
void push(key_type key, value_type &&value) {
const unsigned_key_type x = encoder_type::encode(key);
assert(last_ <= x);
++size_;
const size_t k = internal::find_bucket(x, last_);
buckets_[k].emplace_back(x, std::move(value));
buckets_min_[k] = std::min(buckets_min_[k], x);
}
template <class... Args>
void emplace(key_type key, Args &&...args) {
const unsigned_key_type x = encoder_type::encode(key);
assert(last_ <= x);
++size_;
const size_t k = internal::find_bucket(x, last_);
buckets_[k].emplace_back(std::piecewise_construct, std::forward_as_tuple(x),
std::forward_as_tuple(args...));
buckets_min_[k] = std::min(buckets_min_[k], x);
}
key_type top_key() {
pull();
return encoder_type::decode(last_);
}
value_type &top_value() {
pull();
return buckets_[0].back().second;
}
void pop() {
pull();
buckets_[0].pop_back();
--size_;
}
size_t size() const { return size_; }
bool empty() const { return size_ == 0; }
void clear() {
size_ = 0;
last_ = key_type();
for (auto &b : buckets_) b.clear();
buckets_min_.fill(std::numeric_limits<unsigned_key_type>::max());
}
void swap(pair_radix_heap<KeyType, ValueType, EncoderType> &a) {
std::swap(size_, a.size_);
std::swap(last_, a.last_);
buckets_.swap(a.buckets_);
buckets_min_.swap(a.buckets_min_);
}
private:
size_t size_;
unsigned_key_type last_;
std::array<std::vector<std::pair<unsigned_key_type, value_type>>,
std::numeric_limits<unsigned_key_type>::digits + 1>
buckets_;
std::array<unsigned_key_type,
std::numeric_limits<unsigned_key_type>::digits + 1>
buckets_min_;
void pull() {
assert(size_ > 0);
if (!buckets_[0].empty()) return;
size_t i;
for (i = 1; buckets_[i].empty(); ++i)
;
last_ = buckets_min_[i];
for (size_t j = 0; j < buckets_[i].size(); ++j) {
const unsigned_key_type x = buckets_[i][j].first;
const size_t k = internal::find_bucket(x, last_);
buckets_[k].emplace_back(std::move(buckets_[i][j]));
buckets_min_[k] = std::min(buckets_min_[k], x);
}
buckets_[i].clear();
buckets_min_[i] = std::numeric_limits<unsigned_key_type>::max();
}
};
} // namespace radix_heap
int d[10000 * (1 << 12)];
vector<pair<short, short>> E[10000];
int r[20000];
int c[20000];
void solve() {
Fill(d, INF);
int n, m, k;
cin >> n >> m >> k;
Fill(r, -1);
rep(i, k) {
int t;
cin >> t, t--;
r[t] = i;
}
rep(i, m) {
short a, b;
cin >> a >> b >> c[i];
a--, b--;
E[a].push_back({b, i});
E[b].push_back({a, i});
}
radix_heap::pair_radix_heap<int, int> que;
que.push(0, 0);
d[0] = 0;
int di, num, i, msk, msk2, num2;
const int MSK = (1 << k) - 1;
while (!que.empty()) {
di = que.top_key();
num = que.top_value();
que.pop();
if (d[num] < di) continue;
i = num >> k;
msk = num & MSK;
for (auto [j, ei] : E[i]) {
msk2 = msk;
if (r[ei] != -1) msk2 |= (1 << r[ei]);
num2 = (j << k) | msk2;
if (chmin(d[num2], d[num] + c[ei])) {
que.push(d[num2], num2);
}
}
}
cout << d[n * (1 << k) - 1] << "\n";
}
int main() { solve(); }
stoq