結果

問題 No.1810 RGB Biscuits
ユーザー NatsubiSogan
提出日時 2022-01-14 23:14:13
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 260 ms / 2,000 ms
コード長 2,550 bytes
コンパイル時間 158 ms
コンパイル使用メモリ 82,232 KB
実行使用メモリ 79,888 KB
最終ジャッジ日時 2024-11-20 14:09:07
合計ジャッジ時間 4,569 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import typing
class Matrix:
def __init__(self, n: int, m: int, mat: typing.Union[list, None] = None, mod: int = 10 ** 9 + 7) -> None:
self.n = n
self.m = m
self.mat = [[0] * self.m for i in range(self.n)]
self.mod = mod
if mat:
for i in range(self.n):
self.mat[i] = mat[i]
def is_square(self) -> None:
return self.n == self.m
def __getitem__(self, key: int) -> int:
if isinstance(key, slice):
return self.mat[key]
else:
assert key >= 0
return self.mat[key]
@classmethod
def id(self, n: int) -> "Matrix":
res = Matrix(n, n)
for i in range(n):
res[i][i] = 1
return res
def __len__(self) -> int:
return len(self.mat)
def __str__(self) -> str:
return "\n".join(" ".join(map(str, self[i])) for i in range(self.n))
def times(self, k: int) -> "Matrix":
res = [[0] * self.m for i in range(self.n)]
for i in range(self.n):
for j in range(self.m):
res[i][j] = k * self[i][j] % self.mod
return Matrix(self.n, self.m, res)
def __pos__(self) -> "Matrix":
return self
def __neg__(self) -> "Matrix":
return self.times(-1)
def __add__(self, other: "Matrix") -> "Matrix":
res = [[0] * self.m for i in range(self.n)]
for i in range(self.n):
for j in range(self.m):
res[i][j] = (self[i][j] + other[i][j]) % self.mod
return Matrix(self.n, self.m, res)
def __sub__(self, other: "Matrix") -> "Matrix":
res = [[0] * self.m for i in range(self.n)]
for i in range(self.n):
for j in range(self.m):
res[i][j] = (self[i][j] - other[i][j]) % self.mod
return Matrix(self.n, self.m, res)
def __mul__(self, other: typing.Union["Matrix", int]) -> "Matrix":
if other.__class__ == Matrix:
res = [[0] * other.m for i in range(self.n)]
for i in range(self.n):
for k in range(self.m):
for j in range(other.m):
res[i][j] += self[i][k] * other[k][j]
res[i][j] %= self.mod
return Matrix(self.n, other.m, res)
else:
return self.times(other)
def __rmul__(self, other: typing.Union["Matrix", int]) -> "Matrix":
return self.times(other)
def __pow__(self, k: int) -> "Matrix":
tmp = Matrix(self.n, self.n, self.mat)
res = self.id(self.n)
while k:
if k & 1:
res *= tmp
tmp *= tmp
k >>= 1
return res
A, B = map(int, input().split())
n = int(input())
for _ in range(n):
t = int(input())
x = Matrix(2, 1, [[1], [1]])
M = Matrix(2, 2, [[A, B], [1, 0]])
if t <= 1: ans = x[:]
else: ans = (M ** (t // 2)) * x
r, g = ans[0][0], ans[1][0]
if t % 2: b = A * r + B * g
else: b = 0
print((r + g + b) % (10 ** 9 + 7))
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0