結果
問題 | No.1815 K色問題 |
ユーザー | 👑 Nachia |
提出日時 | 2022-01-20 22:36:52 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,208 ms / 2,000 ms |
コード長 | 7,036 bytes |
コンパイル時間 | 991 ms |
コンパイル使用メモリ | 86,040 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-09-29 22:38:03 |
合計ジャッジ時間 | 5,107 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 53 ms
5,248 KB |
testcase_07 | AC | 14 ms
5,248 KB |
testcase_08 | AC | 738 ms
5,248 KB |
testcase_09 | AC | 10 ms
5,248 KB |
testcase_10 | AC | 13 ms
5,248 KB |
testcase_11 | AC | 195 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 1 ms
5,248 KB |
testcase_14 | AC | 1,208 ms
5,248 KB |
testcase_15 | AC | 1,158 ms
5,248 KB |
ソースコード
#include <vector> #include <utility> namespace nachia{ template<unsigned int MOD> struct StaticModint{ private: using u64 = unsigned long long; unsigned int x; public: using my_type = StaticModint; StaticModint() : x(0){} StaticModint(unsigned int v) : x(v){} unsigned int operator*() const { return x; } my_type& operator+=(const my_type& r){ auto t = x + r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator+(const my_type& r) const { my_type res = *this; return res += r; } my_type& operator-=(const my_type& r){ auto t = x + MOD - r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator-(const my_type& r) const { my_type res = *this; return res -= r; } my_type operator-() const { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; } my_type& operator*=(const my_type& r){ x = (u64)x * r.x % MOD; return *this; } my_type operator*(const my_type& r) const { my_type res = *this; return res *= r; } my_type pow(unsigned long long i) const { my_type a = *this, res = 1; while(i){ if(i & 1) res *= a; a *= a; i >>= 1; } return res; } my_type inv() const { return pow(MOD-2); } unsigned int val() const { return x; } static unsigned int get_mod() { return MOD; } my_type& operator/=(const my_type& r){ return operator*=(r.inv()); } my_type operator/(const my_type& r) const { return operator*(r.inv()); } }; } #include <cassert> namespace nachia{ template<class Elem> struct MatrixModulo{ private: int h; int w; std::vector<Elem> elems; public: MatrixModulo(int new_h, int new_w){ h = new_h; w = new_w; elems.assign(h * w, 0); } MatrixModulo(const MatrixModulo&) = default; int height() const { return h; } int width() const { return w; } typename std::vector<Elem>::iterator operator[](int y){ return elems.begin() + (y * w); } typename std::vector<Elem>::const_iterator operator[](int y) const { return elems.begin() + (y * w); } static MatrixModulo identity(int idx){ auto res = MatrixModulo(idx, idx); for(int i = 0; i < idx; i++) res[i][i] = 1; return res; } MatrixModulo operator*(const MatrixModulo& r) const { assert(w == r.h); auto res = MatrixModulo(h, r.w); for (int i=0; i<h; i++) for (int j=0; j<w; j++) for (int k=0; k<r.w; k++) res[i][k] += (*this)[i][j] * r[j][k]; return res; } Elem det() const { assert(h == w); MatrixModulo g = *this; Elem ans = 1; for (int i=0; i<h; i++) { int tg = -1; for (int j=i; j<h; j++) { if (g[j][i] != 0) tg = j; } if (tg == -1) return 0; if (tg != i) ans = -ans; for (int j=0; j<h; j++) std::swap(g[i][j], g[tg][j]); tg = i; ans *= g[i][i]; Elem const_coeff = g[i][i].inv(); for (int j=0; j<h; j++) g[i][j] *= const_coeff; for (int j=i+1; j<h; j++) for(int k=h-1; k>=i; k--) g[j][k] -= g[j][i] * g[i][k]; } return ans; } int rank() const { MatrixModulo g = *this; int y = 0; for (int d=0; d<w; d++) { if(y == h) break; int tg = -1; for (int i=y; i<h; i++) { if (g[i][d] != 0){ tg = i; break; } } if (tg == -1) continue; for (int j=d; j<w; j++) std::swap(g[y][j], g[tg][j]); tg = y; Elem const_coeff = g[y][d].inv(); for (int j=d; j<w; j++) g[y][j] *= const_coeff; for (int i=y+1; i<h; i++) for(int j=w-1; j>=d; j--) g[i][j] -= g[i][d] * g[y][j]; y++; } return y; } MatrixModulo linear_equation() const { MatrixModulo g = *this; int y = 0; std::vector<std::pair<int,int>> det_var; std::vector<int> rank_var; for (int d=0; d<w-1; d++) { int tg = -1; for (int i=y; i<h; i++) { if (g[i][d] != 0){ tg = i; break; } } if (tg == -1){ rank_var.push_back(d); continue; } for (int j=d; j<w; j++) std::swap(g[y][j], g[tg][j]); tg = y; Elem const_coeff = g[y][d].inv(); for (int j=d; j<w; j++) g[y][j] *= const_coeff; for (int i=0; i<h; i++) if (i != y) for(int j=w-1; j>=d; j--) g[i][j] -= g[i][d] * g[y][j]; det_var.push_back(std::make_pair(d,y)); y++; } for (int i=y; i<h; i++) if (g[i][w-1].val() != 0) return MatrixModulo(0,0); MatrixModulo solution(1 + rank_var.size(), w); for (auto [x,i] : det_var) { solution[0][x] = g[i][w-1]; } solution[0][w-1] = 1; for (int d=0; d<rank_var.size(); d++) { int varid = rank_var[d]; solution[d+1][varid] = -1; for (auto [x,i] : det_var) { solution[d+1][x] = g[i][varid]; } } return solution; } MatrixModulo pow(unsigned long long i){ auto a = *this; auto res = identity(height()); while(i){ if(i % 2 == 1) res = res * a; a = a * a; i /= 2; } return res; } }; } #include <iostream> #include <algorithm> using namespace std; using i64 = long long; using u64 = unsigned long long; using i32 = int; using u32 = unsigned int; #define rep(i,n) for(int i=0; i<(n); i++) using modint = nachia::StaticModint<1000000007>; using matrix = nachia::MatrixModulo<modint>; modint f1(int k, u64 m){ if(k < 1) return 0; return modint(k) * modint(k-1).pow(m-1); } modint f2(int k, u64 m){ if(k < 2) return 0; if(k == 2) return 2; modint a = modint(k) * (k-1); modint b = a - modint(k*2-2) + 1; return a * b.pow(m-1); } modint f3(int k, u64 m){ if(k < 2) return 0; if(k == 2) return 2; matrix A(2,2); modint kP0 = modint(1); modint kP1 = modint(k); modint kP2 = modint(k) * (k-1); modint kP3 = modint(k) * (k-1) * (k-2); A[0][0] = modint(k-2) * (k-2) + (k-1); A[1][0] = modint(k-2) * (k-3) + (k-1); A[0][1] = ( modint(k-2) * (k-3) + (k-1) ) * (k-2); A[1][1] = modint(k) * (k-1) * (k-2) - modint(k-1) * (k-2) * 3 + modint(k-2) * 3 - 1; A = A.pow(m-1); return A[0][0] * kP2 + A[0][1] * kP2 + A[1][0] * kP3 + A[1][1] * kP3; } modint f(int n, int k, u64 m){ if(n == 1) return f1(k,m); if(n == 2) return f2(k,m); if(n == 3) return f3(k,m); return 0; } int main() { int N; cin >> N; u64 M; cin >> M; int K; cin >> K; modint ans = 0; vector<modint> F(K+1,1); for(int i=1; i<=K; i++) F[i]=F[i-1]*i; vector<modint> iF(K+1); iF[K] = F[K].inv(); for(int i=K; i>=1; i--) iF[i-1]=iF[i]*i; for(int k=0; k<=K; k++){ auto tmp = f(N,K-k,M) * F[K] * iF[k] * iF[K-k]; if(k % 2 == 0) ans += tmp; else ans -= tmp; } cout << *ans << endl; return 0; } struct ios_do_not_sync{ ios_do_not_sync(){ std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } } ios_do_not_sync_instance;